Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Oral Health ; 24(1): 1128, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334128

RESUMEN

BACKGROUND: Failure to restore missing teeth in time can easily lead to the mesial tilting of the distal abutment teeth. However, a fixed partial denture (FPD) can improve stress conduction and distribution and prevent periodontal injuries. In these more complex cases, it is necessary to consider various factors comprehensively to improve conventional treatment planning and achieve better results. METHODS: We selected a patient with a missing first molar and a mesial inclination of the second molar, leaving inadequate space or bone mass for implant denture restoration, necessitating an FPD for restoration. Three-dimensional finite element analysis (3D-FEA) combined with photoelastic analysis were used to explore how the inclination angle (0 ‒ 30°) and different dental restoration materials (zirconia, lithium disilicate, polymer-infiltrated ceramic network, and resin composite) affect the biomechanical behaviour of FPD‒abutments‒periodontal tissue complex. RESULTS: The stress was easily concentrated in the FPD connectors, enamel shoulder collar, periapical area, and root bifurcation. The stress on FPD and the periodontal ligament (PDL) of the second premolar increased with an increase in the elastic modulus of FPD, with an opposite trend in the abutments, the alveolar bone, and the PDL of the second molar. The stress on the FPD and alveolar bone increased with increased inclination angle of the distal abutment. The stress on two abutments and their PDL were positively correlated with the inclination angle in two stages; however, when the inclination angle > 12°, the second premolar and its PDL showed a negative correlation. CONCLUSIONS: FPDs can be used for restoration within 24° of distal abutment inclination, but protecting the abutments (< 12° especially) and the periodontal tissue (> 12° especially) must be taken seriously. For this purpose, an FPD material with higher strength is recommended.


Asunto(s)
Diseño Asistido por Computadora , Pilares Dentales , Dentadura Parcial Fija , Análisis de Elementos Finitos , Humanos , Fenómenos Biomecánicos , Materiales Dentales/química , Diseño de Dentadura , Análisis del Estrés Dental/métodos , Circonio/química , Cerámica/química
2.
Macromol Rapid Commun ; 42(17): e2100134, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34355445

RESUMEN

Ultraviolet-curable polyurethane acrylate (PUA) materials can be used in a number of important applications spanning from microfluidics, surface patterning to wearable technology. For the first time, the potential of encapsulation of modified zirconia (ZrO2 ) nanoparticles is reported in PUA-based hybrid films aimed to facilitate profoundly enhanced hardness and refractive index. By successfully manipulating the interfacial reaction conditions between ZrO2 nanoparticles and PUA film, the PUA-based nanocomposites exhibit an ultrahigh hardness of 9 and superior refractive index of 1.64 (589.3 nm). The outcomes obtained pave the way for seamless application of nanozirconia/PUA as a potent encapsulating material that provides structurally morphable, water resistant, and optically transparent light emitting diodes toward wearables devices in healthcare.


Asunto(s)
Nanocompuestos , Nanopartículas , Dispositivos Electrónicos Vestibles , Poliuretanos , Agua
3.
J Am Chem Soc ; 141(20): 8158-8170, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31053030

RESUMEN

In the present study, we report the development of magnetic-plasmonic bilayer vesicles assembled from iron oxide-gold Janus nanoparticles (Fe3O4-Au JNPs) for reactive oxygen species (ROS) enhanced chemotherapy. The amphiphilic Fe3O4-Au JNPs were grafted with poly(ethylene glycol) (PEG) on the Au surface and ROS-generating poly(lipid hydroperoxide) (PLHP) on the Fe3O4 surface, respectively, which were then assembled into vesicles containing two closely attached Fe3O4-Au NPs layers in opposite directions. The self-assembly mechanism of the bilayered vesicles was elucidated by performing a series of numerical simulations. The enhanced optical properties of the bilayered vesicles were verified by the calculated results and experimental data. The vesicles exhibited enhanced T2 relaxivity and photoacoustic properties over single JNPs due to the interparticle magnetic dipole interaction and plasmonic coupling. In particular, the vesicles are pH responsive and disassemble into single JNPs in the acidic tumor environment, activating an intracellular biochemical reaction between the grafted PLHP and released ferrous ions (Fe2+) from Fe3O4 NPs, resulting in highly efficient local ROS generation and increased intracellular oxidative stress. In combination with the release of doxorubicin (DOX), the vesicles combine ROS-mediated cytotoxicity and DOX-induced chemotherapy, leading to greatly improved therapeutic efficacy than monotherapies. High tumor accumulation efficiency and fast vesicle clearance from the body were also confirmed by positron emission tomography (PET) imaging of radioisotope 64Cu-labeled vesicles.


Asunto(s)
Antineoplásicos/uso terapéutico , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Nanopartículas de Magnetita/uso terapéutico , Neoplasias/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/farmacocinética , Liberación de Fármacos , Sinergismo Farmacológico , Oro/química , Humanos , Concentración de Iones de Hidrógeno , Peróxidos Lipídicos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Técnicas Fotoacústicas/métodos , Polietilenglicoles/química , Pirenos/química , Oxígeno Singlete/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Vis Exp ; (211)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39345152

RESUMEN

Temporomandibular joint (TMJ) pain and osteoarthritis (OA) are common and debilitating disorders that impair patients' quality of life. The mechanisms driving diseases-related pain are poorly understood, and current treatments fail to provide effective and long-term therapeutic effects. Additionally, pain assessment in research, particularly orofacial pain, poses several challenges that complicate studies in both clinical and basic science settings. Therefore, we have established an inflammatory TMJ pain mouse model via intra-articular injection of CFA (Complete Freund's Adjuvant) and evaluated pain behaviors by bite force measurement and the von Frey filament test. Mice with CFA injection exhibited orofacial pain behaviors compared to PBS injection, including reduced bite force and head withdrawal threshold in the von Frey filament test. These methods are relatively easy to execute to have reproducible results and can be potentially extended to pain studies for other disease models related to TMJ disorders. Together, bite force, and the von Frey filament tests are reliable in measuring orofacial pain, as demonstrated in CFA injection-induced painful TMJOA mouse models.


Asunto(s)
Fuerza de la Mordida , Adyuvante de Freund , Dimensión del Dolor , Animales , Ratones , Dimensión del Dolor/métodos , Modelos Animales de Enfermedad , Trastornos de la Articulación Temporomandibular/fisiopatología , Articulación Temporomandibular , Dolor Facial , Masculino
5.
Environ Pollut ; 350: 124019, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663506

RESUMEN

Lead(II) is a potential carcinogen of heavy-metal ions (HIs). With the wide application of Pb-bearing products including lead alloy products, and new-energy lead-ion batteries, lead pollution has become a tricky problem. To solve such a difficulty, novel ultrathin MoS2-vinyl hybrid membranes (MVHMs) with a "spring" effect were synthesized via co-polymerization of acrylic acid, styrene and molybdenum disulfide (MoS2) and their adsorptions for HIs were explored. The "spring" effect derived from the interaction between the tendency of the short polyacrylic acid (PAA) chain connected with MoS2 to spread outward and the coulomb force between layers from MoS2 (s-MoS2), which enlarge the spacing of MoS2 layers without changing the number of layers after membrane formation, which changes the swelling membrane to a dense membrane and reduces the original thickness from 0.5 cm to 0.011 mm in the thickness direction. The adsorption experiment revealed that these MVHMs had super adsorption performance and high selectivity for Pb2+ by comparison with other five metal ions: Cu2+, Cd2+, Ni2+, Cr3+ and Zn2+. Especially, the adsorption quantity of MVHMs for Pb2+ could approach 2468 mg/g and the maximum adsorption ratio of qe[Pb2+]/qe[Cu2+] can reach 10.909. These values were much larger than the data obtained with the adsorbents reported in the last decade. A variety of models are applied to evaluate the effect of ionic groups. It was confirmed that -COOH plays a key role in adsorption of HIs and s-MoS2 also has a certain contribution. Conversely, ion exchange plays only a minor role during the period of adsorption process. Effective diffusion coefficient (Deff) of Pb(II) had the largest values among these metal ions. Hence, these hybrid membranes are promising adsorbents for the removal of Pb2+ from water containing various ions.


Asunto(s)
Acrilatos , Disulfuros , Plomo , Molibdeno , Estireno , Molibdeno/química , Plomo/química , Adsorción , Acrilatos/química , Disulfuros/química , Estireno/química , Polimerizacion , Membranas Artificiales , Contaminantes Químicos del Agua/química , Metales Pesados/química
6.
Macromol Biosci ; 24(4): e2300401, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38154146

RESUMEN

Shape memory polymer (SMP) vascular grafts are promising interventional vascular grafts for cardiovascular disease (CAD) treatment; However, hemocompatibility and biocompatibility, which are the critical issues for the SMP vascular grafts, are not systematically concerned. Furthermore, the water-induced SMP grafts are more convenient and safer than the thermally induced ones in case of the bioapplication. Herein, in this work, the new water-induced expanded bilayer vascular graft with the inner layer of crosslinked poly(ε-caprolactone) (cPCL) and the outer layer of water-induced SMP of regenerated chitosan/polyvinyl alcohol (RCS/PVA) are prepared by hot pressing and programming approaches. The results show that the inner and outer layer surfaces of the prepared grafts are smooth, and they exhibit good interfacial interaction properties. The bilayer grafts show good mechanical properties and can be expanded in water with a diameter expansion of ≈30%. When compared with commercial expanded polytetrafluoroethylene (ePTFE), the bilayer graft shows better hemocompatibility (platelet adhesion, hemolysis rate, various clotting times, and plasma recalcification time (PRT)) and in vitro and in vivo biocompatibility, which thus is a promising material for the vascular graft.


Asunto(s)
Injerto Vascular , Agua , Ensayo de Materiales , Prótesis Vascular , Alcohol Polivinílico/farmacología , Politetrafluoroetileno
7.
Surg Radiol Anat ; 35(1): 11-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22669484

RESUMEN

PURPOSE: The aim was to retrospectively compare the measurements of the location and size of the inferior alveolar canal at the mental foramen and the length of the anterior loop between two cohorts of Americans and Taiwanese using cone-beam computed tomography (CBCT). METHODS: CBCT was performed with an I-CAT(®) Cone-Beam 3D Dental Imaging System and reconstructed into multiple-plane views to measure two populations. RESULTS: There was no statistically significant difference (P = 0.2681) in the distance from the mental foramen to the inferior border of the mandible (mandibular border height) between Americans (9.84 ± 2.01 mm) and Taiwanese (10.13 ± 1.66 mm). No significant difference was found (p = 0.1161) in the inferior alveolar canal diameter between these two cohorts (2.26 ± 0.67 and 2.13 ± 0.47 mm, respectively). However, the anterior loop length of Taiwanese (7.61 ± 1.81 mm) was significantly longer than that of Americans (6.22 ± 1.68 mm) (P < 0.0001). CONCLUSION: Our study indicated that (1) the location of mental foramen of Americans was closer to the inferior border of the mandible than Taiwanese; (2) the diameter of the inferior alveolar canal of Americans was larger than Taiwanese; (3) the anterior loop of Taiwanese was longer than Americans. These differences may be, at least partly, due to the racial influence and this information may possess potential valuable clinical relevance.


Asunto(s)
Pueblo Asiatico , Tomografía Computarizada de Haz Cónico , Mandíbula/anatomía & histología , Ápice del Diente/anatomía & histología , Población Blanca , Adulto , Factores de Edad , Anciano , Análisis de Varianza , Estudios de Cohortes , Femenino , Humanos , Masculino , Mandíbula/diagnóstico por imagen , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios Retrospectivos , Factores Sexuales , Ápice del Diente/diagnóstico por imagen , Adulto Joven
8.
J Mech Behav Biomed Mater ; 138: 105572, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36435033

RESUMEN

Joint replacements have become one of the most common orthopedic procedures due to the significant demands of retaining functional mobility. While these procedures are of great value to patients, there are some limitations. Durability is the most important limitation associated with joint replacement that needs to be addressed due to the increasing number of younger patients. Titanium is a commonly used implant material which has high biocompatibility, high strength-to-density ratio, and high corrosion resistance. However, current titanium implants have poor wear resistance which shortens their lifespan. In this study, microscale dimples with four different dimple shapes (circular, triangular, square, and star) of similar sizes to the pores found in natural articular cartilage were fabricated on titanium disks to improve implant lubrication and reduce wear. Biotribology tests were performed on dimpled and non-dimpled titanium disks in a condition similar to that inside of a patient's body. It was shown that dimpling the titanium disks optimized the lubricant film formation and decreased the wear rate significantly while also reducing the coefficient of friction (COF). The star-shaped dimples had the lowest COF and almost no detectable wear after 8 h of testing. To investigate whether dimpling increased bacterial colonization due to increased surface area, and to determine whether any increase could be limited by coating with antibacterial materials, bacterial colonization with Staphylococcus aureus was tested with non-dimpled and star-shaped dimpled titanium disks with and without coating with polydopamine (PDA), silver (Ag) nanoparticles (NPs), and PDA + Ag NPs. It was found that dimpling did not increase bacterial colonization, and that coating with PDA, Ag NPs, or PDA + Ag NPs did not decrease bacterial colonization. Nevertheless, we conclude that star-shaped dimpled titanium surfaces have potential utility as more durable orthopedic implants.


Asunto(s)
Nanopartículas , Titanio , Humanos , Antibacterianos , Fricción , Staphylococcus aureus , Propiedades de Superficie , Materiales Biocompatibles Revestidos
9.
Clin Oral Implants Res ; 23(3): 379-83, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21457350

RESUMEN

OBJECTIVES: The goal of this study was to enhance the blood responses to titanium (Ti) surfaces used for dental implant application through the formation of a TiO2 nano-mesh surface layer produced by a fast electrochemical anodization treatment. MATERIAL AND METHODS: Electrochemical anodization treatments with different anodization currents and temperatures in an alkaline solution were used to create a nano-mesh oxide layer on polished Ti surface. Surface characterizations of the mesh structure were carried out using thin-film X-ray diffractometer, field-emission scanning electron microscope, and atomic force microscope. The blood responses, including the blood-clotting ability and platelet adhesion morphology, to the test Ti surfaces were evaluated. The blood-clotting ability, in terms of optical density of blood, was statistically analyzed using a nonparametric method, Kruskal-Wallis test, for the factor of anodization treatment. RESULTS: A multilayer TiO2 nano-mesh structure was rapidly formed on the polished Ti surface using a simple electrochemical anodization treatment in an alkaline solution. The TiO2 nano-mesh had an average mesh size between 34 and 93 nm, depending on the anodization current and temperature. The features on the TiO2 nano-mesh structure on the anodized Ti surface were of a similar size scale as blood proteins, giving the material better blood clot ability (P<0.05) and improved platelet activation and aggregation as compared with an untreated polished Ti surface. CONCLUSIONS: The formation of TiO2 nano-mesh on the Ti surfaces was shown to enhance blood responses, which we expect to promote cell growth in the application of dental implants.


Asunto(s)
Células Sanguíneas/fisiología , Implantes Dentales , Nanoestructuras , Titanio , Adhesión Celular , Técnicas Electroquímicas , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Estadísticas no Paramétricas , Propiedades de Superficie , Difracción de Rayos X
10.
Chem Soc Rev ; 40(1): 44-56, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20818451

RESUMEN

Gold nanostructures have proven to be a versatile platform for a broad range of biomedical applications, with potential use in numerous areas including: diagnostics and sensing, in vitro and in vivo imaging, and therapeutic techniques. These applications are possible because of the highly favorable properties of gold nanostructures, many of which can be tailored for specific applications. In the first part of this tutorial review, we will discuss the most critical properties of gold nanostructures for biomedical applications: surface chemistry, localized surface plasmon resonance (LSPR), and morphology. In the second part of the review, we will discuss how these properties can be harnessed for a selection of biomedical applications, aiming to give the reader an overview of general strategies as well as highlight some recent advances in this field.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Materiales Biocompatibles/química , Diagnóstico por Imagen , Portadores de Fármacos/química , Resonancia por Plasmón de Superficie
11.
ACS Appl Mater Interfaces ; 14(41): 47003-47013, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36214495

RESUMEN

Air pollution caused by bacteria and viruses has posed a serious threat to public health. Commercial air purifiers based on dense fibrous filters can remove particulate matter, including airborne pathogens, but do not kill them efficiently. Here, we developed a double-grafted antibacterial fiber material for the high-efficiency capture and inactivation of airborne microorganisms. Tetracarboxyl phthalocyanine zinc, a photosensitizer, was first grafted onto the polyester (PET) fiber, followed by coating with chitosan on the surface of PET fiber to make a double-grafted fiber material. Under the irradiation of light with a specific wavelength (680 nm), double-grafted fiber materials killed up to 99.99% of Gram-positive bacteria and Gram-negative bacteria and had a significant antibacterial effect on drug-resistant bacteria. The double-grafted PET fiber showed broad-spectrum antibacterial activities and was capable to inactivate drug-resistant bacteria. Notably, in filtration experiments for airborne bacteria, this double-grafted PET fiber demonstrated a high bacteria capture efficiency (95.68%) better than the untreated PET fiber (64.87%). Besides, the double-grafted PET fiber was capable of efficiently killing airborne bacteria. This work provides a new idea for the development of air filtration materials that can efficiently kill airborne pathogen and has good biosafety.


Asunto(s)
Quitosano , Poliésteres , Fármacos Fotosensibilizantes/farmacología , Material Particulado , Bacterias , Antibacterianos/farmacología , Zinc , Tomografía de Emisión de Positrones
12.
Nat Mater ; 8(12): 935-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19881498

RESUMEN

Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound for each effector. The ultraviolet light may cause damage to biological samples and is suitable only for in vitro studies because of its quick attenuation in tissue. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls. They can have strong absorption (for the photothermal effect) in the near-infrared while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a near-infrared laser. This system works well with various effectors without involving sophisticated syntheses, and is well suited for in vivo studies owing to the high transparency of soft tissue in the near-infrared region.


Asunto(s)
Oro/química , Rayos Infrarrojos , Nanotubos/química , Rayos Láser , Nanotecnología/métodos , Polímeros/química , Dispersión de Radiación , Propiedades de Superficie
13.
ACS Appl Mater Interfaces ; 12(36): 40067-40077, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32794690

RESUMEN

Metal nanoparticles, especially silver nanoparticles (AgNPs), have drawn increasing attention for antimicrobial applications. Most studies have emphasized on the correlations between the antibacterial potency of AgNPs and the kinetics of metallic to ionic Ag conversion, while other antimicrobial mechanisms have been underestimated. In this work, we focused on the surface effects of polydopamine (PDA) coating on the antimicrobial activity of AgNPs. A method of fast deposition of PDA was used to synthesize the PDA-AgNPs with controllable coating thickness ranging from 3 to 25 nm. The antimicrobial activities of the PDA-AgNPs were analyzed by fluorescence-based growth curve assays on Escherichia coli. The results indicated that the PDA-AgNPs exhibited significantly higher antibacterial activities than poly(vinylpyrrolidone)-passivated AgNPs (PVP-AgNPs) and PDA themselves. It was found that the PDA coating synergized with the AgNPs to prominently enhance the potency of the PDA-AgNPs against bacteria. The analysis of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy elucidated that the synergistic effects could be originated from the interaction/coordination between Ag and catechol group on the PDA coating. The synergistic effects led to increased generation of reactive oxygen species and the consequent bacterial damage. These findings demonstrated the importance of the surface effects on the antimicrobial properties of AgNPs. The underlying molecular mechanisms have shined light on the future development of more potent metal nanoparticle-based antimicrobial agents.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli K12/efectos de los fármacos , Indoles/farmacología , Nanopartículas del Metal/química , Polímeros/farmacología , Plata/farmacología , Antibacterianos/química , Indoles/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Imagen Óptica , Tamaño de la Partícula , Polímeros/química , Plata/química , Propiedades de Superficie
14.
J Mech Behav Biomed Mater ; 68: 51-61, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28152443

RESUMEN

Six types of diamond-like carbon (DLC) coatings with zirconium (Zr)-containing interlayers on titanium alloy (Ti-6Al-4V) were investigated for improving the biotribological performance of orthopedic implants. The coatings consist of three layers: above the substrate a layer stack of 32 alternating Zr and ZrN sublayers (Zr:ZrN), followed by a layer comprised of Zr and DLC (Zr:DLC), and finally a N-doped DLC layer. The Zr:ZrN layer is designed for increasing load carrying capacity and corrosion resistance; the Zr:DLC layer is for gradual transition of stress, thus enhancing layer adhesion; and the N-doped DLC layer is for decreasing friction, squeaking noises and wear. Biotribological experiments were performed in simulated body fluid employing a ball-on-disc contact with a Si3N4 ball and a rotational oscillating motion to mimic hip motion in terms of gait angle, dynamic contact pressures, speed and body temperature. The results showed that the Zr:DLC layer has a substantial influence on eliminating delamination of the DLC from the substrates. The DLC/Si3N4 pairs significantly reduced friction coefficient, squeaking noise and wear of both the Si3N4 balls and the discs compared to those of the Ti-6Al-4V/Si3N4 pair after testing for a duration that is equivalent to one year of hip motion in vivo.


Asunto(s)
Carbono/química , Ensayo de Materiales , Prótesis e Implantes , Titanio/química , Circonio/química , Aleaciones , Corrosión , Diamante , Prótesis de Cadera , Humanos , Propiedades de Superficie , Soporte de Peso
15.
Theranostics ; 7(8): 2177-2185, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740543

RESUMEN

Although various noble metal and semiconducting molecules have been developed as photoacoustic (PA) agents, the use of semiconducting polymer-metal nanoparticle hybrid materials to enhance PA signal has not been explored. A novel semiconducting-plasmonic nanovesicle was fabricated by self-assembly of semiconducting poly(perylene diimide) (PPDI) and poly(ethylene glycol (PEG) tethered gold nanoparticles (Au@PPDI/PEG). A highly localized and strongly enhanced electromagnetic (EM) field is distributed between adjacent gold nanoparticles in the vesicular shell, where the absorbing collapsed PPDI is present. Significantly, the EM field in turn enhances the light absorption efficiency of PPDI, leading to a much greater photothermal effect and a stronger photoacoustic signal compared to PDI nanoparticle or gold nanovesicle alone. The optical property of the hybrid vesicle can be further tailored by controlling the ratio of PPDI and gold nanoparticle as well as the adjustable interparticle distance of gold nanoparticles localized in the vesicular shell. In vivo imaging and therapeutic evaluation demonstrated that the hybrid vesicle is an excellent probe for cancer theranostics.


Asunto(s)
Oro/metabolismo , Hipertermia Inducida/métodos , Nanopartículas/metabolismo , Imagen Óptica/métodos , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Animales , Modelos Animales de Enfermedad , Fenómenos Electromagnéticos , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Xenoinjertos , Ratones , Nanomedicina/métodos , Trasplante de Neoplasias , Polietilenglicoles/metabolismo , Resultado del Tratamiento
16.
J Neurol Sci ; 360: 13-7, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26723964

RESUMEN

Cerebral aneurysm is a bulging of the artery inside the brain that results from a weakened or thin area of the artery wall. Ruptured cerebral aneurysm could lead to serious brain damage or even death, thus the proper treatment is essential. Compared with the conventional microsurgical clipping approach, the endovascular coiling treatment has many advantages, however, with a major disadvantage of high recurrence rate. One way to lower the recurrence rate, which has been tried since one decade ago, is to modify the coil to be bioactive and releasing biological molecules to stimulate tissue ingrowth and aneurysm healing. We have identified three candidates including osteopontin (OPN), IL-10 and matrix metallopeptidase 9 (MMP-9) from previous studies and generated platinum coils coated with these proteins in the carrier of poly-DL-lactic glycolic acid (PLGA). We were interested to know whether coils coated with OPN, IL-10 and MMP-9 were able to promote aneurysm healing and we have tested it in the rat carotid aneurysm model. We found that OPN and IL-10 coated coils had shown significant improvement in tissue ingrowth while MMP-9 coated coils failed to enhance tissue ingrowth compared with the control group. Our studies suggested the possible application of OPN and IL-10 coated coils in aneurysm treatment to overcome the recurrence.


Asunto(s)
Materiales Biocompatibles Revestidos , Procedimientos Endovasculares/métodos , Interleucina-10/uso terapéutico , Aneurisma Intracraneal/terapia , Osteopontina/uso terapéutico , Animales , Modelos Animales de Enfermedad , Embolización Terapéutica/métodos , Femenino , Interleucina-10/administración & dosificación , Aneurisma Intracraneal/tratamiento farmacológico , Masculino , Metaloproteinasa 9 de la Matriz/administración & dosificación , Metaloproteinasa 9 de la Matriz/uso terapéutico , Osteopontina/administración & dosificación , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
17.
J Colloid Interface Sci ; 461: 225-231, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26402781

RESUMEN

Non-covalent incorporation of hydrophobic drugs into polymeric systems is a commonly-used strategy for drug delivery because non-covalent interactions minimize modification of the drug molecules whose efficacy is retained upon release. The behaviors of the drug-polymer delivery system in the biological environments it encounters will affect the efficacy of treatment. In this report, we have investigated the interaction between a hydrophobic drug and its encapsulating polymer in model biological environments using a photosensitizer encapsulated in a polymer-coated nanoparticle system. The photosensitizer, 3-(1'-hexyloxyethyl)-3-devinylpyropheophorbide-a (HPPH), was non-covalently incorporated to the poly(ethylene glycol) (PEG) layer coated on Au nanocages (AuNCs) to yield AuNC-HPPH complexes. The non-covalent binding was characterized by Scatchard analysis, fluorescence lifetime, and Raman experiments. The dissociation constant between PEG and HPPH was found to be ∼35 µM with a maximum loading of ∼2.5×10(5) HPPHs/AuNC. The release was studied in serum-mimetic environment and in vesicles that model human cell membranes. The rate of protein-mediated drug release decreased when using a negatively-charged or cross-linked terminus of the surface-modified PEG. Furthermore, the photothermal effect of AuNCs can initiate burst release, and thus allow control of the release kinetics, demonstrating on-demand drug release. This study provides insights regarding the actions and release kinetics of non-covalent drug delivery systems in biological environments.


Asunto(s)
Clorofila/análogos & derivados , Oro/metabolismo , Nanopartículas del Metal/química , Modelos Biológicos , Fármacos Fotosensibilizantes/metabolismo , Polietilenglicoles/metabolismo , Porfirinas/metabolismo , Membrana Celular , Clorofila/química , Clorofila/metabolismo , Sistemas de Liberación de Medicamentos , Oro/química , Humanos , Cinética , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Polietilenglicoles/química , Porfirinas/química , Propiedades de Superficie
20.
ACS Nano ; 6(1): 512-22, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22148912

RESUMEN

The coverage density of poly(ethylene glycol) (PEG) is a key parameter in determining the efficiency of PEGylation, a process pivotal to in vivo delivery and targeting of nanomaterials. Here we report four complementary methods for quantifying the coverage density of PEG chains on various types of Au nanostructures by using a model system based on HS-PEG-NH(2) with different molecular weights. Specifically, the methods involve reactions with fluorescamine and ninhydrin, as well as labeling with fluorescein isothiocyanate (FITC) and Cu(2+) ions. The first two methods use conventional amine assays to measure the number of unreacted HS-PEG-NH(2) molecules left behind in the solution after incubation with the Au nanostructures. The other two methods involve coupling between the terminal -NH(2) groups of adsorbed -S-PEG-NH(2) chains and FITC or a ligand for Cu(2+) ion, and thus pertain to the "active" -NH(2) groups on the surface of a Au nanostructure. We found that the coverage density decreased as the length of PEG chains increased. A stronger binding affinity of the initial capping ligand to the Au surface tended to reduce the PEGylation efficiency by slowing down the ligand exchange process. For the Au nanostructures and capping ligands we have tested, the PEGylation efficiency decreased in the order of citrate-capped nanoparticles > PVP-capped nanocages ≈ CTAC-capped nanoparticles ≫ CTAB-capped nanorods, where PVP, CTAC, and CTAB stand for poly(vinyl pyrrolidone), cetyltrimethylammonium chloride, and cetyltrimethylammonium bromide, respectively.


Asunto(s)
Oro/química , Técnicas de Sonda Molecular , Nanoestructuras/química , Nanoestructuras/ultraestructura , Polietilenglicoles/química , Espectrometría de Fluorescencia/métodos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA