Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
BMC Public Health ; 13: 156, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23425550

RESUMEN

BACKGROUND: Few studies have evaluated health impacts, especially biomarker changes, following implementation of a new environmental policy. This study examined changes in water fluoride, urinary fluoride (UF), and bone metabolism indicators in children after supplying low fluoride public water in endemic fluorosis areas of Southern China. We also assessed the relationship between UF and serum osteocalcin (BGP), calcitonin (CT), alkaline phosphatase (ALP), and bone mineral density to identify the most sensitive bone metabolism indicators related to fluoride exposure. METHODS: Four fluorosis-endemic villages (intervention villages) in Guangdong, China were randomly selected to receive low-fluoride water. One non-endemic fluorosis village with similar socio-economic status, living conditions, and health care access, was selected as the control group. 120 children aged 6-12 years old were randomly chosen from local schools in each village for the study. Water and urinary fluoride content as well as serum BGP, CT, ALP and bone mineral density were measured by the standard methods and compared between the children residing in the intervention villages and the control village. Benchmark dose (BMD) and benchmark dose lower limit (BMDL) were calculated for each bone damage indicator. RESULTS: Our study found that after water source change, fluoride concentrations in drinking water in all intervention villages (A-D) were significantly reduced to 0.11 mg/l, similar to that in the control village (E). Except for Village A where water change has only been taken place for 6 years, urinary fluoride concentrations in children of the intervention villages were lower or comparable to those in the control village after 10 years of supplying new public water. The values of almost all bone indicators in children living in Villages B-D and ALP in Village A were either lower or similar to those in the control village after the intervention. CT and BGP are sensitive bone metabolism indicators related to UF. While assessing the temporal trend of different abnormal bone indicators after the intervention, bone mineral density showed the most stable and the lowest abnormal rates over time. CONCLUSIONS: Our results suggest that supplying low fluoride public water in Southern China is successful as measured by the reduction of fluoride in water and urine, and changes in various bone indicators to normal levels. A comparison of four bone indicators showed CT and BGP to be the most sensitive indicators.


Asunto(s)
Huesos/metabolismo , Enfermedades Endémicas , Fluoruración/estadística & datos numéricos , Fluoruros/orina , Fluorosis Dental/metabolismo , Fosfatasa Alcalina/sangre , Biomarcadores/sangre , Densidad Ósea , Calcitonina/sangre , Niño , China/epidemiología , Femenino , Fluorosis Dental/epidemiología , Humanos , Masculino , Osteocalcina/sangre
2.
Int J Nanomedicine ; 16: 4197-4208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34188469

RESUMEN

INTRODUCTION: Intracellular protein delivery is emerging as a potential strategy to revolutionize therapeutics in the field of biomedicine, aiming at treating a wide range of diseases including cancer, inflammatory diseases and other oxidative stress-related disorders with high specificity. However, the current challenges and limitations are addressed to either synthetically or biologically through multipotency of engineering, such as protein modification, insufficient delivery of large-size proteins, deficiency or mutation of proteins, and high cytotoxicity. METHODS: We prepared the nanocomposites by mixing protein with PEI1200 at a certain molar ratio and demonstrated that it can deliver proteins into living cells in high efficiency and safety through the following experiments, such as dynamic light scattering, fluorescent detection, agarose gel electrophoresis, ß-Galactosidase activity detection, immunofluorescence staining, digital fluorescent detection, cell viability assay and flow cytometry. RESULTS: The self-assembly of PEI1200/protein nanocomposites with appropriate molar ratio (4:1 and 8:1) could provide efficiently delivery of active proteins to a variety of cell types in the presence of serum. The nanocomposites could continuously release protein up to 96 h in their desired intracellular locations. In addition, these nanocomposites were able to preserve protein activity while maintain low cytotoxicity (when final concentration <1 µg/mL). CONCLUSION: Collectively, PEI1200-based delivery system provided an alternative strategy to direct protein delivery in high efficiency and safety, offering increased potential applications in clinical biomedicine.


Asunto(s)
Espacio Intracelular/metabolismo , Polietileneimina/química , Proteínas/administración & dosificación , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Peso Molecular , Nanocompuestos/química , Nanocompuestos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA