Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Small ; 16(19): e1907393, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32212416

RESUMEN

Minimally invasive therapies avoiding surgical complexities evoke great interest in developing injectable biomedical devices. Herein, a versatile approach is reported for engineering injectable and biomimetic nanofiber microspheres (NMs) with tunable sizes, predesigned structures, and desired compositions via gas bubble-mediated coaxial electrospraying. The sizes and structures of NMs are controlled by adjusting processing parameters including air flow rate, applied voltage, distance, and spinneret configuration in the coaxial setup. Importantly, unlike the self-assembly method, this technique can be used to fabricate NMs from any material feasible for electrospinning or other nanofiber fabrication techniques. To demonstrate the versatility, open porous NMs are successfully fabricated that consist of various short nanofibers made of poly(ε-caprolactone), poly(lactic-co-glycolic acid), gelatin, methacrylated gelatin, bioglass, and magneto-responsive polymer composites. Open porous NMs support human neural progenitor cell growth in 3D with a larger number and more neurites than nonporous NMs. Additionally, highly open porous NMs show faster cell infiltration and host tissue integration than nonporous NMs after subcutaneous injection to rats. Such a novel class of NMs holds great potential for many biomedical applications such as tissue filling, cell and drug delivery, and minimally invasive tissue regeneration.


Asunto(s)
Nanofibras , Animales , Biomimética , Gelatina , Microesferas , Poliésteres , Polímeros , Ratas , Ingeniería de Tejidos , Andamios del Tejido
2.
Nano Lett ; 19(3): 2059-2065, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30788971

RESUMEN

Assembling electrospun nanofibers with controlled alignment into three-dimensional (3D), complex, and predesigned shapes has proven to be a difficult task for regenerative medicine. Herein, we report a novel approach inspired by solids of revolution that transforms two-dimensional (2D) nanofiber mats of a controlled thickness into once-inaccessible 3D objects with predesigned shapes. The 3D objects are highly porous, consisting of layers of aligned nanofibers separated by gaps ranging from several micrometers to several millimeters. Upon compression, the objects are able to recover their original shapes. The porous objects can serve as scaffolds, guiding the organization of cells and producing highly ordered 3D tissue constructs. Additionally, subcutaneous implantation in rats demonstrates that the 3D objects enable rapid cell penetration, new blood vessel formation, and collagen matrix deposition. This new class of 3D hierarchical nanofiber architectures offers promising advancements in both in vitro engineering of complex 3D tissue constructs/models or organs and in vivo tissue repair and regeneration.


Asunto(s)
Materiales Biocompatibles/química , Nanofibras/química , Medicina Regenerativa , Ingeniería de Tejidos , Animales , Materiales Biocompatibles/síntesis química , Células Cultivadas , Colágeno/química , Poliésteres/química , Porosidad , Ratas , Andamios del Tejido
3.
Nanomedicine ; 22: 102081, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31400571

RESUMEN

Biomimetic and injectable nanofiber microspheres (NMs) could be ideal candidate for minimally invasive tissue repair. Herein, we report a facile approach to fabricate peptide-tethered NMs by combining electrospinning, electrospraying, and surface conjugation techniques. The composition and size of NMs can be tuned by varying the processing parameters during the fabrication. Further, bone morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) mimicking peptides have been successfully tethered onto poly(ε-caprolactone) (PCL):gelatin:(gelatin-methacryloyl) (GelMA)(1:0.5:0.5) NMs through photocrosslinking of the methacrylic group in GelMA and octenyl alanine (OCTAL) in the modified peptides. The BMP-2-OCTAL peptide-tethered NMs significantly promote osteogenic differentiation of bone marrow-derived stem cells (BMSCs). Moreover, human umbilical vein endothelial cells (HUVECs) seeded on VEGF mimicking peptide QK-OCTAL-tethered NMs significantly up-regulated vascular-specific proteins, leading to microvascularization. The strategy developed in this work holds great potential in developing a biomimetic and injectable carrier to efficiently direct cellular response (Osteogenesis and Angiogenesis) for tissue repair.


Asunto(s)
Materiales Biomiméticos/farmacología , Inyecciones , Células Madre Mesenquimatosas/citología , Microesferas , Nanofibras/química , Péptidos/farmacología , Animales , Proteína Morfogenética Ósea 2/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Gelatina/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Cinética , Luz , Células Madre Mesenquimatosas/efectos de los fármacos , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Nanofibras/ultraestructura , Neovascularización Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Osteopontina/metabolismo , Poliésteres/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ingeniería de Tejidos
4.
Nanomedicine ; 13(4): 1435-1445, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28185940

RESUMEN

Surgical site infections (SSIs) represent the most common nosocomial infection among surgical patients. In order to prevent SSIs in a sustained manner and lessen side effects, we developed a twisting method for generation of nanofiber-based sutures capable of simultaneous delivery of silver and gentamicin. The prepared sutures are composed of core-sheath nanofibers with gentamicin/pluronic F127 in the core and silver/PCL in the sheath produced by co-axial electrospinning. The diameters of obtained sutures range from ~80 µm to ~1.2 mm. The in vitro release profiles of silver and gentamicin exhibit an initial burst followed by a sustained release over 5 weeks. The co-encapsulated sutures were able to kill bacteria much more effectively than gentamicin or silver alone loaded nanofiber sutures, without showing obvious impact on proliferation and migration of dermal fibroblasts and keratinocytes. The gentamicin and silver co-loaded PCL nanofiber sutures may hold great potential for prevention of SSIs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Gentamicinas/química , Nanofibras/química , Plata/química , Suturas , Antibacterianos/química , Línea Celular , Infección Hospitalaria/tratamiento farmacológico , Liberación de Fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Poliésteres/química , Pseudomonas aeruginosa/efectos de los fármacos , Infección de la Herida Quirúrgica/tratamiento farmacológico
5.
Trends Biotechnol ; 42(5): 631-647, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38158307

RESUMEN

Electrospinning technology has garnered wide attention over the past few decades in various biomedical applications including drug delivery, cell therapy, and tissue engineering. This technology can create nanofibers with tunable fiber diameters and functionalities. However, the 2D membrane nature of the nanofibers, as well as the rigidity and low porosity of electrospun fibers, lower their efficacy in tissue repair and regeneration. Recently, new avenues have been explored to resolve the challenges associated with 2D electrospun nanofiber membranes. This review discusses recent trends in creating different electrospun nanofiber microstructures from 2D nanofiber membranes by using various post-processing methods, as well as their biotechnological applications.


Asunto(s)
Biotecnología , Nanofibras , Ingeniería de Tejidos , Nanofibras/química , Biotecnología/métodos , Ingeniería de Tejidos/métodos , Sistemas de Liberación de Medicamentos , Humanos , Materiales Biocompatibles/química , Andamios del Tejido/química
6.
Adv Sci (Weinh) ; 11(19): e2307409, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477567

RESUMEN

Uncontrollable massive bleeding caused by trauma will cause the patient to lose a large amount of blood and drop body temperature quickly, resulting in hemorrhagic shock. This study aims to develop a hemostatic product for hemorrhage management. In this study, waste pomelo peel as raw material is chosen. It underwent processes of carbonization, purification, and freeze-drying. The obtained carbonized pomelo peel (CPP) is hydrophilic and exhibits a porous structure (nearly 80% porosity). The water/blood absorption ratio is significantly faster than the commercial Gelfoam and has a similar water/blood absorption capacity. In addition, the CPP showed a water-triggered shape-recoverable ability. Moreover, the CPP shows ideal cytocompatibility and blood compatibility in vitro and favorable tissue compatibility after long terms of subcutaneous implantation. Furthermore, CPP can absorb red blood cells and fibrin. It also can absorb platelets and activate platelets, and it is capable of achieving rapid hemostasis on the rat tail amputation and hepatectomized hemorrhage model. In addition, the CPP not only can quickly stop bleeding in the rat liver-perforation and rabbit heart uncontrolled hemorrhage models, but also promotes rat liver and rabbit heart tissue regeneration in situ. These results suggest the CPP has shown great potential for managing uncontrolled hemorrhage.


Asunto(s)
Celulosa , Modelos Animales de Enfermedad , Hemorragia , Animales , Conejos , Ratas , Celulosa/química , Citrus/química , Hemostáticos/farmacología , Masculino , Hemostasis/efectos de los fármacos , Ratas Sprague-Dawley , Geles , Heridas y Lesiones/complicaciones
7.
Adv Sci (Weinh) ; 10(16): e2207347, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37035946

RESUMEN

Uncontrolled hemorrhage is still the most common cause of potentially preventable death after trauma in prehospital settings. However, there rarely are hemostatic materials that can achieve safely and efficiently rapid hemostasis simultaneously. Here, new carbonized cellulose-based aerogel hemostatic material is developed for the management of noncompressible torso hemorrhage, the most intractable issue of uncontrolled hemorrhage. The carbonized cellulose aerogel is derived from the Agaricus bisporus after a series of processing, including cutting, carbonization, purification, and freeze-drying. In vitro, the carbonized cellulose aerogels with porous structure show improved hydrophilicity, good blood absorption, and coagulation ability, rapid shape recoverable ability under wet conditions. And in vivo, the carbonized aerogels show effective hemostatic ability in both small and big animal serious hemorrhage models. The amount of blood loss and the hemostatic time of carbonized aerogels are all better than the positive control group. Moreover, the mechanism studies reveal that the good hemostatic ability of the carbonized cellulose aerogel is associated with high hemoglobin binding efficiency, red blood cell absorption, and platelets absorption and activation. Together, the carbonized aerogel developed in this study could be promising for the management of uncontrolled hemorrhage.


Asunto(s)
Agaricales , Hemostáticos , Animales , Hemorragia/terapia , Coagulación Sanguínea , Hemostáticos/uso terapéutico , Hemostáticos/química , Hemostáticos/farmacología , Celulosa/uso terapéutico
8.
Mil Med Res ; 10(1): 16, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978167

RESUMEN

Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering (TE) and regenerative medicine. In contrast to conventional biomaterials or synthetic materials, biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix (ECM). Additionally, such materials have mechanical adaptability, microstructure interconnectivity, and inherent bioactivity, making them ideal for the design of living implants for specific applications in TE and regenerative medicine. This paper provides an overview for recent progress of biomimetic natural biomaterials (BNBMs), including advances in their preparation, functionality, potential applications and future challenges. We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM. Moreover, we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications. Finally, we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.


Asunto(s)
Materiales Biocompatibles , Materiales Biomiméticos , Humanos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Materiales Biocompatibles/química , Ingeniería de Tejidos , Medicina Regenerativa , Biomimética , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/uso terapéutico , Materiales Biomiméticos/química
9.
Adv Healthc Mater ; 10(19): e2100766, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34219401

RESUMEN

Electrostatic flocking, a textile engineering technique, uses Coulombic driving forces to propel conductive microfibers toward an adhesive-coated substrate, leaving a forest of aligned fibers. Though an easy way to induce anisotropy along a surface, this technique is limited to microfibers capable of accumulating charge. This study reports a novel method, utilizing principles from the percolation theory to make electrically insulative polymeric microfibers flockable. A variety of well-mixed, conductive materials are added to multiple insulative and biodegradable polymer microfibers during wet spinning, which enables nearly all types of polymer microfibers to accumulate sufficient charges required for flocking. Biphasic, biodegradable scaffolds are fabricated by flocking silver nanoparticle (AgNP)-filled poly(ε-caprolactone) (PCL) microfibers onto substrates made from 3D printing, electrospinning, and thin-film casting. The incorporation of AgNP into PCL fibers and use of chitosan-based adhesive enables antimicrobial activity against methicillin-resistant Staphylococcus aureus. The fabricated scaffolds demonstrate both favorable in vitro cell response and new tissue formation after subcutaneous implantation in rats, as evident by newly formed blood vessels and infiltrated cells. This technology opens the door for using previously unflockable polymer microfibers as surface modifiers or standalone structures in various engineering fields.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Animales , Poliésteres , Polímeros , Ratas , Plata , Electricidad Estática , Ingeniería de Tejidos , Andamios del Tejido
10.
J Mater Chem B ; 8(17): 3733-3746, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32211735

RESUMEN

Over the past two decades, electrospinning has emerged as an enabling nanotechnology to produce nanofiber materials for various biomedical applications. In particular, therapeutic/cellloaded nanofiber scaffolds have been widely examined in drug delivery, wound healing, and tissue repair and regeneration. However, due to the insufficient porosity, small pore size, noninjectability, and inaccurate spatial control in nanofibers of scaffolds, many efforts have been devoted to exploring new forms of nanofiber materials including expanded nanofiber scaffolds, nanofiber aerogels, short nanofibers, and nanofiber microspheres. This short review discusses the preparation and potential biomedical applications of new forms of nanofiber materials.


Asunto(s)
Materiales Biocompatibles/farmacología , Nanofibras/química , Andamios del Tejido/química , Cicatrización de Heridas/efectos de los fármacos , Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos , Humanos , Tamaño de la Partícula , Propiedades de Superficie
11.
Adv Mater ; 32(43): e2003754, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32944991

RESUMEN

New methods are described for converting 2D electrospun nanofiber membranes to 3D hierarchical assemblies with structural and compositional gradients. Pore-size gradients are generated by tuning the expansion of 2D membranes in different layers with incorporation of various amounts of a surfactant during the gas-foaming process. The gradient in fiber organizations is formed by expanding 2D nanofiber membranes composed of multiple regions collected by varying rotating speeds of mandrel. A compositional gradient on 3D assemblies consisting of radially aligned nanofibers is prepared by dripping, diffusion, and crosslinking. Bone mesenchymal stem cells (BMSCs) on the 3D nanofiber assemblies with smaller pore size show significantly higher expression of hypoxia-related markers and enhanced chondrogenic differentiation compared to BMSCs cultured on the assemblies with larger pore size. The basic fibroblast growth factor gradient can accelerate fibroblast migration from the surrounding area to the center in an in vitro wound healing model. Taken together, 3D nanofiber assemblies with gradients in pore sizes, fiber organizations, and contents of signaling molecules can be used to engineer tissue constructs for tissue repair and build biomimetic disease models for studying disease biology and screening drugs, in particular, for interface tissue engineering and modeling.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Membranas Artificiales , Nanofibras , Diferenciación Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Difusión , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Nanofibras/química , Osteogénesis/efectos de los fármacos , Porosidad
12.
J Vis Exp ; (143)2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30663697

RESUMEN

Electrospinning has been the preferred technology in producing a synthetic, functional scaffold due to the biomimicry to extracellular matrix and the ease control of composition, structure, and diameter of fibers. However, despite these advantages, traditional electrospun nanofiber scaffolds come with limitations including disorganized nanofiber orientation, low porosity, small pore size, and mainly two-dimensional mats. As such, there is a great need for developing a new process for fabricating electrospun nanofiber scaffolds that can overcome the above limitations. Herein, a novel and simple method is outlined. A traditional 2D nanofiber mat is transformed into a 3D scaffold with desired thickness, gap distance, porosity, and nanotopographic cues to allow for cell seeding and proliferation through the depressurization of subcritical CO2 fluid. In addition to providing a scaffold for tissue regeneration to occur, this method also provides the opportunity to encapsulate bioactive molecules such as antimicrobial peptides for local drug delivery. The CO2 expanded nanofiber scaffolds hold great potential in tissue regeneration, wound healing, 3D tissue modeling, and topical drug delivery.


Asunto(s)
Nanofibras/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Dióxido de Carbono/química , Cumarinas/química , Poliésteres/química , Porosidad , Ratas Sprague-Dawley , Tiazoles/química
13.
Adv Drug Deliv Rev ; 132: 188-213, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29729295

RESUMEN

Electrospinning provides an enabling nanotechnology platform for generating a rich variety of novel structured materials in many biomedical applications including drug delivery, biosensing, tissue engineering, and regenerative medicine. In this review article, we begin with a thorough discussion on the method of producing 1D, 2D, and 3D electrospun nanofiber materials. In particular, we emphasize on how the 3D printing technology can contribute to the improvement of traditional electrospinning technology for the fabrication of 3D electrospun nanofiber materials as drug delivery devices/implants, scaffolds or living tissue constructs. We then highlight several notable examples of electrospun nanofiber materials in specific biomedical applications including cancer therapy, guiding cellular responses, engineering in vitro 3D tissue models, and tissue regeneration. Finally, we finish with conclusions and future perspectives of electrospun nanofiber materials for drug delivery and regenerative medicine.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanotecnología , Medicina Regenerativa , Materiales Biocompatibles/química , Bioimpresión , Humanos , Nanofibras/química , Impresión Tridimensional , Ingeniería de Tejidos
14.
Biomaterials ; 179: 46-59, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29980074

RESUMEN

Uncontrolled hemorrhage, which typically involves the torso and/or limb junctional zones, remains a great challenge in the prehospital setting. Here, we for the first time report an injectable and superelastic nanofiber rectangle matrix ("peanut") fabricated by a combination of electrospinning, gas foaming, hydrogel coating and crosslinking techniques. The compressed nanofiber peanut is capable of re-expanding to its original shape in atmosphere, water and blood within 10 s. Such nanofiber peanuts exhibit greater capacity of water/blood absorption compared to current commercial products and high efficacy in whole blood clotting assay, in particular for thrombin-immobilized samples. These nanofiber peanuts are capable of being packed into a syringe for injection. Further in vivo tests indicated the effectiveness of nanofiber peanuts for hemostasis in a porcine liver injury model. This new class of nanofiber-based materials may hold great promise for hemostatic applications.


Asunto(s)
Materiales Biocompatibles/química , Nanofibras/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
15.
ACS Appl Mater Interfaces ; 10(30): 25069-25079, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29993232

RESUMEN

Nanofiber microspheres have attracted a lot of attention for biomedical applications because of their injectable and biomimetic properties. Herein, we report for the first time a new method for fabrication of nanofiber microspheres by combining electrospinning and electrospraying and explore their potential applications for cell therapy. Electrospraying of aqueous dispersions of electrospun nanofiber segments with desired length obtained by either cryocutting or homogenization into liquid nitrogen followed by freeze-drying and thermal treatment can form nanofiber microspheres. The microsphere size can be controlled by varying the applied voltage during the electrospray process. A variety of morphologies were achieved including solid, nanofiber, porous and nanofiber microspheres, and hollow nanofiber microspheres. Furthermore, a broad range of polymer and inorganic bioactive glass nanofiber-based nanofiber microspheres could be fabricated by electrospraying of their short nanofiber dispersions, indicating a comprehensive applicability of this method. A higher cell carrier efficiency of nanofiber microspheres as compared to solid microspheres was demonstrated with rat bone marrow-derived mesenchymal stem cells, along with the formation of microtissue-like structures in situ, when injected into microchannel devices. Also, mouse embryonic stem cells underwent neural differentiation on the nanofiber microspheres, indicated by positive staining of ß-III-tubulin and neurite outgrowth. Taken together, we developed a new method for generating nanofiber microspheres that are injectable and have improved viability and maintenance of stem cells for potential application in cell therapy.


Asunto(s)
Nanofibras , Animales , Células Madre Mesenquimatosas , Ratones , Microesferas , Polímeros , Ratas , Células Madre
16.
Acta Biomater ; 68: 237-248, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29269334

RESUMEN

Traditional electrospun nanofiber membranes were incapable of promoting cellular infiltration due to its intrinsic property (e.g., dense structure and small pore size) limiting their use in tissue regeneration. Herein, we report a simple and novel approach for expanding traditional nanofiber membranes from two-dimensional to three-dimensional (3D) with controlled thickness and porosity via depressurization of subcritical CO2 fluid. The expanded 3D nanofiber scaffolds formed layered structures and simultaneously maintained the aligned nanotopographic cues. The 3D scaffolds also retained the fluorescent intensity of encapsulated coumarin 6 and the antibacterial activity of encapsulated antimicrobial peptide LL-37. In addition, the expanded 3D nanofiber scaffolds with arrayed holes can significantly promote cellular infiltration and neotissue formation after subcutaneous implantation compared to traditional nanofiber membranes. Such scaffolds also significantly increased the blood vessel formation and the ratio of M2/M1 macrophages after subcutaneous implantation for 2 and 4 weeks compared to traditional nanofiber membranes. Together, the presented method holds great potential in the fabrication of functional 3D nanofiber scaffolds for various applications including engineering 3D in vitro tissue models, antimicrobial wound dressing, and repairing/regenerating tissues in vivo. STATEMENT OF SIGNIFICANCE: Electrospun nanofibers have been widely used in regenerative medicine due to its biomimicry property. However, most of studies are limited to the use of 2D electrospun nanofiber membranes. To the best of our knowledge, this article is the first instance of the transformation of traditional electrospun nanofiber membranes from 2D to 3D via depressurization of subcritical CO2 fluid. This method eliminates many issues associated with previous approaches such as necessitating the use of aqueous solutions and chemical reactions, multiple-step process, loss of the activity of encapsulated biological molecules, and unable to expand electrospun nanofiber mats made of hydrophilic polymers. Results indicate that these CO2 expanded nanofiber scaffolds can maintain the activity of encapsulated biological molecules. Further, the CO2 expanded nanofiber scaffolds with arrayed holes can greatly promote cellular infiltration, neovascularization, and positive host response after subcutaneous implantation in rats. The current work is the first study elucidating such a simple and novel strategy for fabrication of 3D nanofiber scaffolds.


Asunto(s)
Materiales Biocompatibles/química , Dióxido de Carbono/farmacología , Células Gigantes/citología , Nanofibras/química , Andamios del Tejido/química , Animales , Cumarinas/química , Nanofibras/ultraestructura , Poliésteres/química , Ratas Sprague-Dawley , Tiazoles/química , Ingeniería de Tejidos
17.
Colloids Surf B Biointerfaces ; 140: 574-582, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26628331

RESUMEN

The mechanical miss-match between the host and an implanted foreign body is one of the primary causes for implantation failure. To enhance the efficacy in wound repair, we developed stiffness-tunable temperature-sensitive hydrogels composed of poly(amidoamine) (PAA)-based poly(n-isopropyl acrylamide) (PNIPAM). PNIPAM-PAA hydrogels with three different stiffness fabricated by varying the concentrations of poly(amidoamine) were chosen for morphology and rheology tests. The degradation rate and cell compatibility of gels were also characterized. The PAA-PNIPAM hydrogels were then tested in a wound healing model of mice with full-thickness skin loss. We found that the stiffness of hydrogels has an impact on the wound healing process mainly by regulating the cell activities in the proliferation phase. PNIPAM-PAA hydrogels with appropriate stiffness reduce scar formation and improve wound healing by promoting myofibroblast transformation, keratinocytes proliferation, extracellular matrix synthesis and remodeling. Moreover, the stiffness of hydrogels impact on the secretion of TGF-ß1 and bFGF, which play an important role in skin wound healing. These results suggest that the therapeutic effects of hydrogels in skin wound healing can by regulated by hydrogels' stiffness.


Asunto(s)
Acrilamidas/química , Hidrogeles/farmacología , Poliaminas/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Elasticidad , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Hidrogeles/química , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Fenómenos Mecánicos , Ratones Endogámicos C57BL , Estructura Molecular , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Factores de Tiempo , Factor de Crecimiento Transformador beta1/metabolismo
18.
J Biomater Appl ; 30(9): 1385-91, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26801474

RESUMEN

Pelvic organ prolapse (POP) is a serious health issue that affects many adult women. Surgical treatments for POP patients comprise a common strategy in which scaffold materials are used to reconstruct the prolapsed pelvic. However, the existing materials for pelvic reconstruction cannot meet clinical requirements in terms of biocompatibility, mechanics and immunological rejection. To address these concerns, polypropylene (PP) mesh was selected because of its strong mechanical properties. Small intestinal submucosa (SIS) was used to modify the PP mesh via a mussel-inspired polydopamine coating to enhance its biocompatibility. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) results demonstrated that SIS was successfully conjugated on the surface of the PP mesh. Moreover, the cytotoxicity results indicated that the PP mesh and SIS-modified PP mesh were safe to use. Furthermore, in vivo tests demonstrated that the fibroplasia around the implanted site in the SIS-modified PP mesh group was significantly less than the fibroplasia around the PP mesh group. In addition, the immunohistochemistry staining results indicated that the expression of pro-inflammatory macrophages (M1) was substantially lower and that the expression of pro-healing macrophages (M2) was higher in the SIS-modified PP mesh group. Furthermore, ELISA detection indicated that the expression of IL-1ß and IL-6 in the SIS-modified PP mesh group was reduced compared with the PP mesh group. These findings suggest that a SIS-modified polypropylene hybrid mesh via a mussel-inspired polydopamine coating is a promising approach in pelvic reconstruction.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Indoles/química , Mucosa Intestinal/química , Polímeros/química , Polipropilenos/química , Mallas Quirúrgicas , Andamios del Tejido/química , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/toxicidad , Bivalvos/química , Línea Celular , Materiales Biocompatibles Revestidos/toxicidad , Femenino , Indoles/inmunología , Indoles/toxicidad , Interleucina-1beta/análisis , Interleucina-1beta/inmunología , Interleucina-6/análisis , Interleucina-6/inmunología , Mucosa Intestinal/inmunología , Ensayo de Materiales , Ratones , Polímeros/toxicidad , Polipropilenos/inmunología , Polipropilenos/toxicidad , Ratas Sprague-Dawley , Mallas Quirúrgicas/efectos adversos , Porcinos
19.
Sci Rep ; 5: 18104, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26643550

RESUMEN

The purpose of this study was to permit bone marrow mesenchymal stem cells (BMSCs) to reach their full potential in the treatment of chronic wounds. A biocompatible multifunctional crosslinker based temperature sensitive hydrogel was developed to deliver BMSCs, which improve the chronic inflammation microenvironments of wounds. A detailed in vitro investigation found that the hydrogel is suitable for BMSC encapsulation and can promote BMSC secretion of TGF-ß1 and bFGF. In vivo, full-thickness skin defects were made on the backs of db/db mice to mimic diabetic ulcers. It was revealed that the hydrogel can inhibit pro-inflammatory M1 macrophage expression. After hydrogel association with BMSCs treated the wound, significantly greater wound contraction was observed in the hydrogel + BMSCs group. Histology and immunohistochemistry results confirmed that this treatment contributed to the rapid healing of diabetic skin wounds by promoting granulation tissue formation, angiogenesis, extracellular matrix secretion, wound contraction, and re-epithelialization. These results show that a hydrogel laden with BMSCs may be a promising therapeutic strategy for the management of diabetic ulcers.


Asunto(s)
Complicaciones de la Diabetes/patología , Hidrogel de Polietilenoglicol-Dimetacrilato , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Úlcera Cutánea/patología , Cicatrización de Heridas , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Complicaciones de la Diabetes/terapia , Modelos Animales de Enfermedad , Tejido de Granulación/metabolismo , Tejido de Granulación/patología , Hidrogel de Polietilenoglicol-Dimetacrilato/síntesis química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Masculino , Ensayo de Materiales , Ratones , Úlcera Cutánea/etiología , Úlcera Cutánea/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA