Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Theranostics ; 7(7): 1966-1975, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28638482

RESUMEN

The construction, characterization and surgical application of a multilayered iron oxide-based macroporous composite framework were reported in this study. The framework consisted of a highly porous iron oxide core, a gelatin-based hydrogel intermediary layer and a matrigel outer cover, which conferred a multitude of desirable properties including excellent biocompatibility, improved mechanical strength and controlled biodegradability. The large pore sizes and high extent of pore interconnectivity of the framework stimulated robust neovascularization and resulted in substantially better cell viability and proliferation as a result of improved transport efficiency for oxygen and nutrients. In addition, rat models with myocardial infraction showed sustained heart tissue regeneration over the infract region and significant improvement of cardiac functions following the surgical implantation of the framework. These results demonstrated that the current framework might hold great potential for cardiac repair in patients with myocardial infraction.


Asunto(s)
Implantes Absorbibles , Compuestos Férricos/uso terapéutico , Infarto del Miocardio/terapia , Animales , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapéutico , Células Madre Mesenquimatosas/fisiología , Infarto del Miocardio/cirugía , Neovascularización Fisiológica , Ratas , Regeneración , Resultado del Tratamiento
2.
Sci Rep ; 5: 11105, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26077243

RESUMEN

Implant materials need to be highly biocompatible to avoid inflammation in clinical practice. Although biodegradable polymeric implants can eliminate the need for a second surgical intervention to remove the implant materials, they may produce acidic degradation products in vivo and cause non-bacterial inflammation. Here we show the strategy of "substrate-anchored and degradation-sensitive coatings" for biodegradable implants. Using poly(lactic acid)/hydroxyapatite as an implant material model, we constructed a layer-by-layer coating using pH-sensitive star polymers and dendrimers loaded with an anti-inflammatory drug, which was immobilised through a hydroxyapatite-anchored layer. The multifunctional coating can effectively suppress the local inflammation caused by the degradation of implant materials for at least 8 weeks in vivo. Moreover, the substrate-anchored coating is able to modulate the degradation of the substrate in a more homogeneous manner. The "substrate-anchored and degradation-sensitive coating" strategy therefore exhibits potential for the design of various self-anti-inflammatory biodegradable implant materials.


Asunto(s)
Implantes Absorbibles , Materiales Biocompatibles Revestidos/química , Dendrímeros/química , Durapatita/química , Ácido Láctico/química , Polímeros/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Composición de Medicamentos , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Indometacina/química , Indometacina/farmacología , Inyecciones Subcutáneas , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/biosíntesis , Interleucina-6/antagonistas & inhibidores , Interleucina-6/biosíntesis , Cinética , Masculino , Poliésteres , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/biosíntesis
3.
Colloids Surf B Biointerfaces ; 123: 486-92, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25311963

RESUMEN

The combination of multiple drugs within a single nanocarrier can provide significant advantages for disease therapy and it is desirable to introduce a second drug based on host-guest interaction in these co-delivery systems. In this study, a core-stabilized mixed micellar system consisting of ß-cyclodextrin-conjugated poly(lactic acid)-b-poly(ethylene glycol) (ß-CD-PLA-mPEG) and DL-Thioctic acid (TA) terminated PLA-mPEG (TA-PLA-mPEG) was developed for the co-delivery of DOX and fluorescein isothiocyanate labeled adamantane (FA). DOX can be loaded within the hydrophobic segment of PLA and FA may form stable complexation with ß-CD in the core. The mixed micelles (MM) are based on well-accepted medical materials and can be easily cross-linked by adding 1,4-dithio-D,L-threitol (DTT), which can enhance the stability of the system. Drug-loaded MM system was characterized in terms of particle size, morphology, drug loading and in vitro release profile. Cytotoxicity test showed that blank MM alone showed negligible cytotoxicity whereas the drug-loaded MM remained relatively high cytotoxicity for HeLa cancer cells. Confocal laser scanning microscopy (CLSM) demonstrated that the MM could efficiently deliver and release DOX and FA in the same tumor cells to effectively improve drugs' bioavailability. These results suggested that the core-stabilized MM are highly promising for intracellular co-delivery of multiple drugs.


Asunto(s)
Ciclodextrinas/química , Portadores de Fármacos/química , Micelas , Polímeros/química , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA