RESUMEN
OBJECTIVE: To explore the genetic basis for a child with Leigh syndrome. METHODS: Clinical features and laboratory test of the patient were analyzed. Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) of the mitochondrial genome were carried out. Next generation sequencing (NGS) was used to capture and sequence nuclear genes related to mitochondrial structure and function. RESULTS: The child presented with developmental delay, unsteady gait, falling episodes, bilateral upper extremity tremor, muscle hypertonia, convulsions, and mouth angle asymmetry. Serum lactic acid was significantly increased. Cranial MRI showed abnormal signal in bilateral cerebellar hemispheres, bilateral basal ganglia, left thalamus, and corona radiata. Her mother and brother did not show any anomalies. Sanger sequencing revealed the child, her mother and brother all carried the MT-ND3 m.10191 T>C mutation, with heterogeneous rates respectively being 74.34%, 9.73%, and 6.28%. MLPA revealed heterogeneity of (MT-ND6, MTCYB-390nt)] deletion in all three individuals. No significant mutation was found by NGS sequencing of the children, their parents and brother. CONCLUSION: Leigh syndrome can be caused by the simultaneous existence of multiple mitochondrial genes, and multiple mutations may play a synergic role in the occurrence of the disease.
Asunto(s)
Enfermedad de Leigh , Niño , ADN Mitocondrial , Femenino , Genes Mitocondriales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedad de Leigh/genética , Masculino , MutaciónRESUMEN
Microorganisms that facilitate the decomposition of agricultural wastes are of importance during composting processes. Here, we assessed if microbial agents, comprising Clonostachys rosea, Bacillus amylolyticus and Rhodospirillum photometricum can facilitate the decomposition of a compost mix of vegetable waste, chicken manure, sawdust, and biochar. The results showed that inoculating the compost mix with the microbial agents elevated the compost temperature, increased the thermophilic period, and enhanced cellulose degradation. Microbial agent inoculation also changed the diversity and richness of decomposing microbial communities. Among the microbial agents, the mixture of C. rosea and B. amylolyticus performed better than other mixtures. Taken together, the results confirmed that the microbial agents comprising C. rosea can enhance the composting process by ameliorating the physiochemical conditions of agricultural wastes and promoting the diversity and proliferation of beneficial bacteria involved in the decomposition of cellulose.
Asunto(s)
Compostaje , Microbiota , Suelo , Agricultura , Estiércol/microbiología , CelulosaRESUMEN
OBJECTIVES: In this study, the authors attempted to develop a photoconductive method for measuring light transmission through a crown restoration to the root dentin; metal-ceramic crowns with four coping designs (metal collar, and metal framework ending 0, 1, and 2mm coronal to the axiogingival line angle) and two all-ceramic crowns (Empress II and In-Ceram Alumina) were compared. METHODS: According to pre-registered templates, 36 crowns were fabricated for an extracted central incisor. A cadmium sulfide (CdS) photoconductive cell was secured onto the root of a tooth, which was fixed in a light box. The validity and reliability of the experimental design were verified, and the impedance of the cell was recorded when the crowns were placed on the prepared tooth with or without try-in pastes under a constant luminance. RESULTS: A significant correlation (r= -0.99, p<0.001) was found between the light intensity and impedance of the CdS cell, and a 1.15% coefficient of variation between repeated measurements was observed. In this study, Empress II crowns had the smallest impedance, indicating that they provided the best light transmission. Conventional metal-ceramic crowns had the least light transmission, which was significantly improved by reducing the metal collar (p<0.05). The framework of metal-ceramic crowns which ended 2mm coronal to the axiogingival line angle showed as much light transmission as the In-Ceram crowns. The impedance increased when try-in pastes were employed in all test groups. SIGNIFICANCE: The photoconductive method was proven to be a reliable technique for measuring the light transmitted through restorations into the adjacent tissue.