Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Control Release ; 368: 131-139, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38331003

RESUMEN

Poly(ß-amino ester)s (PAEs) have emerged as a type of highly safe and efficient non-viral DNA delivery vectors. However, the influence of amphiphilicity and chain sequence on DNA transfection efficiency and safety profile remain largely unexplored. In this study, four PAEs with distinct amphiphilicity and chain sequences were synthesized. Results show that both amphiphilicity and chain sequence significantly affect the DNA binding and condensation ability of PAEs, as well as size, zeta potential and cellular uptake of PAE/DNA polyplexes. PAEs with different amphiphilicity and chain sequence exhibit cell type-dependent transfection capabilities: in human bladder transitional cell carcinoma (UM-UC-3), hydrophilic PAE (P-Philic) and amphiphilic PAE random copolymer (R-Amphilic) exhibit relatively higher gene transfection efficiency, while in human bladder epithelial immortalized cells (SV-HUC-1), hydrophobic PAE (P-Phobic), R-Amphilic, and amphiphilic PAE block copolymer (B-Amphilic) demonstrate higher transfection capability. Regardless of cell types, amphiphilic PAE block copolymer (B-Amphilic) always exhibits much lower gene transfection efficiency. In addition, in human colon cancer cells (HCT-116), P-Philic and R-Amphilic achieved superior gene transfection efficiency at high and low polymer/DNA weight ratios, respectively. Importantly, R-Amphilic can effectively deliver the gene encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to human chondrosarcoma cells SW1353 to induce their apoptosis, highlighting its potential application in cancer gene therapy. This study not only establishes a new paradigm for enhancing the gene transfection efficiency of PAEs by modulating their amphiphilicity and chain sequence but also identifies R-Amphilic as a potential candidate for the effective delivery of TRAIL gene in cancer gene therapy.


Asunto(s)
Ésteres , Polímeros , Humanos , Polímeros/química , Transfección , ADN , Técnicas de Transferencia de Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA