Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Gut ; 71(9): 1843-1855, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34921062

RESUMEN

OBJECTIVE: Stromal barriers, such as the abundant desmoplastic stroma that is characteristic of pancreatic ductal adenocarcinoma (PDAC), can block the delivery and decrease the tumour-penetrating ability of therapeutics such as tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), which can selectively induce cancer cell apoptosis. This study aimed to develop a TRAIL-based nanotherapy that not only eliminated the extracellular matrix barrier to increase TRAIL delivery into tumours but also blocked antiapoptotic mechanisms to overcome TRAIL resistance in PDAC. DESIGN: Nitric oxide (NO) plays a role in preventing tissue desmoplasia and could thus be delivered to disrupt the stromal barrier and improve TRAIL delivery in PDAC. We applied an in vitro-in vivo combinatorial phage display technique to identify novel peptide ligands to target the desmoplastic stroma in both murine and human orthotopic PDAC. We then constructed a stroma-targeted nanogel modified with phage display-identified tumour stroma-targeting peptides to co-deliver NO and TRAIL to PDAC and examined the anticancer effect in three-dimensional spheroid cultures in vitro and in orthotopic PDAC models in vivo. RESULTS: The delivery of NO to the PDAC tumour stroma resulted in reprogramming of activated pancreatic stellate cells, alleviation of tumour desmoplasia and downregulation of antiapoptotic BCL-2 protein expression, thereby facilitating tumour penetration by TRAIL and substantially enhancing the antitumour efficacy of TRAIL therapy. CONCLUSION: The co-delivery of TRAIL and NO by a stroma-targeted nanogel that remodels the fibrotic tumour microenvironment and suppresses tumour growth has the potential to be translated into a safe and promising treatment for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Humanos , Ratones , Nanogeles , Óxido Nítrico , Neoplasias Pancreáticas/patología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Microambiente Tumoral , Neoplasias Pancreáticas
2.
J Breath Res ; 14(3): 036002, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32015218

RESUMEN

Previous studies have shown that breath ammonia (breath-NH3) concentration is associated with blood urea nitrogen (BUN) levels. However, interindividual variations in breath-NH3 concentrations were observed. Thus, the present study aimed to assess the effect of oral cavity conditions on breath-NH3 concentration and to validate whether the measurement of breath-NH3 concentration is feasible in clinical settings. A total of 125 individuals, including patients with stage 3 to 5 chronic kidney disease (CKD3-5), those on dialysis, and healthy participants, were recruited. A nanostructured sensor was used to detect breath-NH3 concentrations. Pre- and post-gargling as well as pre- and post-hemodialysis (HD) breath-NH3, salivary pH, and salivary urea levels were measured. Breath-NH3, salivary urea, salivary pH, and BUN levels were positively correlated to each other. Breath-NH3 concentrations were associated with BUN levels (r = 0.43, p < 0.001) and were significantly higher in CKD3-5 (p < 0.005) and dialysis patients (p < 0.001) than in healthy participants. Higher correlation coefficients were noted between breath-NH3 concentrations and BUN levels during follow-up (r = 0.59-0.94, p < 0.05). When the cutoff value of breath-NH3 was set at 523.65 ppb, its sensitivity and specificity in predicting CKD (BUN level >24 mg dl-1) were 87.6% and 80.9%, respectively. Breath-NH3 concentrations decreased after HD (p < 0.001) and immediately after gargling (p < 0.01). Breath-NH3 concentration, which was affected by gargling, was correlated to BUN level. The measurement of breath-NH3 concentration using the nanostructured device may be used as a tool for CKD detection and personalized point-of-care for CKD and dialysis patients. The current study had a small sample size. Thus, further studies with a larger cohort must be conducted to validate the effect of oral factors on breath-NH3 concentration and to validate the benefit of breath-NH3 measurement.


Asunto(s)
Amoníaco/análisis , Nitrógeno de la Urea Sanguínea , Pruebas Respiratorias/métodos , Diálisis Renal , Insuficiencia Renal Crónica/sangre , Adulto , Pruebas Respiratorias/instrumentación , Femenino , Humanos , Concentración de Iones de Hidrógeno , Masculino , Persona de Mediana Edad , Curva ROC , Insuficiencia Renal Crónica/diagnóstico , Saliva/química , Urea/análisis
3.
J Drug Target ; 26(5-6): 516-524, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29251522

RESUMEN

Chronic liver diseases have recently garnered substantial attention as a leading cause of death around the world. During the progression of liver fibrosis/cirrhosis induced by chronic liver injury, hepatic stellate cells (HSCs) play key roles in the regulation of liver fibrogenesis and can even accelerate the progression of hepatocellular carcinoma (HCC). Thus, inhibition of HSC activation or suppression of inflammatory cytokine secretion by HSCs may be an efficient therapeutic strategy to ameliorate liver fibrosis/cirrhosis. In this study, we demonstrated that Cellax NPs (Carboxymethylcellulose - docetaxel-conjugated nanoparticles), which are nanoscale Pegylated carboxymethylcellulose - DTX conjugates, selectively target activated HSCs and abrogate their fibrogenic properties in vitro. Furthermore, Cellax NPs alleviated CCl4-induced hepatic fibrosis and suppressed HCC progression in a clinically relevant HCC model associated with underlying liver fibrosis in vivo. Taken together, Cellax NPs demonstrate great therapeutic promise as a treatment for liver fibrosis and cancer.


Asunto(s)
Carboximetilcelulosa de Sodio/química , Docetaxel/administración & dosificación , Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Tetracloruro de Carbono/toxicidad , Carcinoma Hepatocelular/prevención & control , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Docetaxel/farmacología , Portadores de Fármacos/química , Células Estrelladas Hepáticas/patología , Humanos , Cirrosis Hepática/complicaciones , Cirrosis Hepática/patología , Neoplasias Hepáticas/prevención & control , Masculino , Ratones , Ratones Endogámicos C3H , Nanopartículas , Polietilenglicoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA