Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chim Acta ; 1301: 342450, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38553121

RESUMEN

Molecular imprinting polymers (MIPs) are synthetic receptors as biomimetic materials for various applications ranging from sensing to separation and catalysis. However, currently existing MIPs are stuck to some of the issues including the longer preparation steps and poor performance. In this report, a facile and one-pot strategy by integrating the in-situ growth of magnetic nanoparticles and reversed phase microemulsion oriented molecularly imprinting strategy to develop magnetic molecular imprinted nanocomposites was proposed. Through self-assembling of the template, it brought up highly ordered and uniform arrangement of the imprinting structure, which offered faster adsorption kinetic as adsorption equilibrium was achived within 15 min, higher adsorption capacity (Qmax = 48.78 ± 1.54 µmol/g) and high affinity (Kd = 127.63 ± 9.66 µM) toward paradigm molecule-adenosine monophosphate (AMP) compared to the conventional bulk imprinting. The developed MIPs offered better affinity and superior specificity which allowed the specific enrichment toward targeted phosphorylated peptides from complex samples containing 100-fold more abundant interfering peptides. Interestingly, different types of MIPs can be developed which could targetly enrich the specific phosphorylated peptides for mass spectrometry analysis by simply switching the templates, and this strategy also successfully achieved imprinting of macromolecular peptides. Collectively, the approach showed broad applicability to target specific enrichment from metabolites to phosphorylated peptides and providing an alternative choice for selective recognition and analysis from complex biological systems.


Asunto(s)
Impresión Molecular , Polímeros , Polímeros/química , Péptidos , Sustancias Macromoleculares , Adsorción , Impresión Molecular/métodos
2.
Biosens Bioelectron ; 258: 116349, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705072

RESUMEN

Detection of cancer-related exosomes in body fluids has become a revolutionary strategy for early cancer diagnosis and prognosis prediction. We have developed a two-step targeting detection method, termed PS-MIPs-NELISA SERS, for rapid and highly sensitive exosomes detection. In the first step, a phospholipid polar site imprinting strategy was employed using magnetic PS-MIPs (phospholipids-molecularly imprinted polymers) to selectively isolate and enrich all exosomes from urine samples. In the second step, a nanozyme-linked immunosorbent assay (NELISA) technique was utilized. We constructed Au/Na7PMo11O39 nanoparticles (NPs) with both surface-enhanced Raman scattering (SERS) property and peroxidase catalytic activity, followed by the immobilization of CD9 antibodies on the surface of Au/Na7PMo11O39 NPs. The Au/Na7PMo11O39-CD9 antibody complexes were then used to recognize CD9 proteins on the surface of exosomes enriched by magnetic PS-MIPs. Lastly, the high sensitivity detection of exosomes was achieved indirectly via the SERS activity and peroxidase-like activity of Au/Na7PMo11O39 NPs. The quantity of exosomes in urine samples from pancreatic cancer patients obtained by the PS-MIPs-NELISA SERS technique showed a linear relationship with the SERS intensity in the range of 6.21 × 107-2.81 × 108 particles/mL, with a limit of detection (LOD) of 5.82 × 107 particles/mL. The SERS signal intensity of exosomes in urine samples from pancreatic cancer patients was higher than that of healthy volunteers. This bidirectional MIPs-NELISA-SERS approach enables noninvasive, highly sensitive, and rapid detection of cancer, facilitating the monitoring of disease progression during treatment and opening up a new avenue for rapid early cancer screening.


Asunto(s)
Técnicas Biosensibles , Exosomas , Oro , Espectrometría Raman , Humanos , Exosomas/química , Oro/química , Espectrometría Raman/métodos , Fosfolípidos/química , Fosfolípidos/orina , Límite de Detección , Impresión Molecular , Polímeros Impresos Molecularmente/química , Epítopos/inmunología , Epítopos/química , Nanopartículas del Metal/química , Tetraspanina 29/orina , Tetraspanina 29/análisis , Anticuerpos Inmovilizados/química
3.
Anal Chim Acta ; 1250: 340970, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36898811

RESUMEN

Immobilized enzymes outperform free enzymes in many properties and are widely used in environmental monitoring, engineering applications, food and medical fields. Based on the developed immobilization techniques, the search for immobilization with wider applicability, lower cost and more stable enzyme properties is of significant importance. In this study, we reported a molecular imprinting strategy for immobilizing peptide mimics of DhHP-6 on mesoporous materials. The DhHP-6 molecularly imprinted polymer (MIP) showed much higher adsorption capacity than raw mesoporous silica toward DhHP-6. The DhHP-6 peptide mimics was immobilized on the surface of mesoporous silica for the fast detection of phenolic compounds, a widely spread pollutant with highly toxic and difficult in degradation. Immobilized enzyme of DhHP-6-MIP exhibited higher peroxidase activity, better stability, and recyclability than free peptide. Notably, DhHP-6-MIP showed excellent linearity for the detection of the two phenols with detection limits of 0.28 µM and 0.25 µM, respectively. In combination with the spectral analysis and PCA method, DhHP-6-MIP provided better discrimination between the six phenolic compounds (phenol, catechol, resorcinol, hydroquinone, 2-chlorophenol, 2, 4-dichlorophenol). Our study showed that immobilization of peptide mimics by the molecular imprinting strategy using mesoporous silica as carriers was a simple and effective approach. The DhHP-6-MIP has great potentiality for the monitoring and degradation of environmental pollutants.


Asunto(s)
Impresión Molecular , Nanopartículas , Polímeros/química , Fenoles/química , Impresión Molecular/métodos , Polímeros Impresos Molecularmente , Péptidos , Dióxido de Silicio/química , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA