Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biochem Mol Toxicol ; 35(4): e22700, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33421271

RESUMEN

Nasopharyngeal cancer is a malignancy developing from the nasopharynx epithelium due to smoking and nitrosamine-containing foods. Nasopharyngeal cancer is highly endemic to Southeast Asia. Eugenol and piperine have shown many anticancer activities on numerous cancer types, like colon, lung, liver, and breast cancer. In this study, we amalgamated eugenol and piperine loaded with a polyhydroxy butyrate/polyethylene glycol nanocomposite (Eu-Pi/PHB-PEG-NC) for better anticancer results against nasopharyngeal cancer (C666-1) cells. In the current study, nasopharyngeal cancer cell lines C666-1 were utilized to appraise the cytotoxic potential of Eug-Pip-PEG-NC on cell propagation, programmed cell death, and relocation. Eu-Pi/PHB-PEG-NC inhibits cellular proliferation on C666-1 cells in a dose-dependent manner, and when compared with 20 µg/ml, 15 µg/ml of loaded mixture evidently restrained the passage aptitude of C666-1 cells, this was attended with a downregulated expression of mitochondrial membrane potential. Treatment with 15 µg/ml Eu-Pi/PHB-PEG-NC suggestively amplified cell apoptosis in the C666-1 cells. Furthermore, its cleaved caspase-3, 8, and 9 and Bax gene expression was augmented and Bcl-2 gene expression was diminished after Eu-Pi/PHB-PEG-NC treatment. Additionally, our data established that the collective effect of Eu-Pi/PHB-PEG-NC loaded micelles inhibited the expansion of C666-1 cells augmented apoptosis connected with the intrusion of PI3K/Akt/mTOR signaling pathway.


Asunto(s)
Alcaloides , Apoptosis/efectos de los fármacos , Benzodioxoles , Portadores de Fármacos , Eugenol , Nanocompuestos , Neoplasias Nasofaríngeas , Piperidinas , Alcamidas Poliinsaturadas , Transducción de Señal/efectos de los fármacos , Alcaloides/química , Alcaloides/farmacología , Benzodioxoles/química , Benzodioxoles/farmacología , Línea Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Elafina/metabolismo , Eugenol/química , Eugenol/farmacología , Humanos , Nanocompuestos/química , Nanocompuestos/uso terapéutico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Piperidinas/química , Piperidinas/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Polihidroxialcanoatos/química , Polihidroxialcanoatos/farmacología , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/farmacología , Prohibitinas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
2.
Langmuir ; 35(5): 1727-1739, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29925240

RESUMEN

Poly(ethylene terephtalate) (PET)-based materials face general biofouling issues that we addressed by grafting a copolymer of glycidyl methacrylate and sulfobetaine methacrylate, poly(GMA- r-SBMA). The grafting procedure involved a dip-coating step followed by UV-exposure and led to successful grafting of the copolymer as evidenced by X-ray photoelectron spectroscopy and zeta potential measurements. It did not modify the pore size nor the porosity of the PET membranes. In addition, their surface hydrophilicity was considerably improved, with a water contact angle falling to 30° in less than 20 s and 0° in less than 1 min. The effect of copolymer concentration in the coating bath (dip-coating procedure) and UV exposure time (UV step) were scrutinized during biofouling studies involving several bacteria such as Escherichia coli and Stenotrophomonas maltophilia, but also whole blood and HT1080 fibroblasts cells. The results indicate that if all conditions led to improved biofouling mitigation, due to the efficiency of the zwitterionic copolymer and grafting procedure, a higher concentration (15 mg/mL) and longer UV exposure time (at least 10 min) enhanced the grafting density which reflected on the biofouling results and permitted a better general biofouling control regardless of the nature of the biofoulant (bacteria, blood cells, fibroblasts).


Asunto(s)
Tereftalatos Polietilenos/química , Adhesión Bacteriana/efectos de los fármacos , Betaína/análogos & derivados , Betaína/síntesis química , Betaína/química , Incrustaciones Biológicas/prevención & control , Células Sanguíneas/efectos de los fármacos , Línea Celular Tumoral , Compuestos Epoxi/síntesis química , Compuestos Epoxi/química , Escherichia coli/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/síntesis química , Metacrilatos/química , Tereftalatos Polietilenos/síntesis química , Stenotrophomonas maltophilia/efectos de los fármacos
3.
Langmuir ; 33(38): 9822-9835, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28830143

RESUMEN

Titanium and stainless steel materials are widely used in numerous devices or in custom parts for their excellent mechanical properties. However, their lack of biocompatibility seriously limits their usage in the biomedical field. This study focuses on the grafting of triblock copolymers on titanium and stainless steel metal susbtrates for improving their general biofouling resistance. The series of copolymers that we designed is composed of two blocks of zwitterionic sulfobetaine (SBMA) monomers and one block of glycidyl methacrylate (GMA). The number of repeat units forming each block, n, was finely tuned and controlled to 25, 50, 75, or 100, permitting regulation of the grafting thickness, the morphology, and the dependent properties such as the surface hydrophilicity and biofouling resistance. It was shown that the copolymer possessing n = 50 repeat units in each block, corresponding to a molecular weight of about 15.2 kDa, led to the best nonfouling properties, assessed using plasma proteins, blood cells, fibroblasts cells, and various bacteria. This was explained by an optimized grafting degree and chain organization of the copolymer. Lower value (n = 25) and higher values (n = 75, 100) led to low surface coverage and the formation of aggregates, respectively. The best copolymer was grafted onto scalpels (steel) and dental roots (titanium), and antifouling properties demonstrated using Escherichia coli and HT1080 cells. Results of this work show that this unique triblock copolymer holds promise as a potential material for surface modification of biomedical metallic devices, provided a fine-tuning of the blocks organization and length.

4.
Langmuir ; 33(8): 1914-1926, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28147481

RESUMEN

Cationic vectors are ideal candidates for gene delivery thanks to their capability to carry large gene inserts and their scalable production. However, their cationic density gives rise to high cytotoxicity. We present the proper designed core-shell polyplexes made of either poly(ethylene imine) (PEI) or poly(2-dimethylamino ethyl methacrylate) (PDMAEMA) as the core and zwitterionic poly(acrylic acid)-block-poly(sulfobetaine methacrylate) (PAA-b-PSBMA) diblock copolymer as the shell. Gel retardation and ethidium bromide displacement assays were used to determine the PEI/DNA or PDMAEMA/DNA complexation. At neutral pH, the copolymer serves as a protective shell of the complex. As PSBMA is a nonfouling block, the shell reduced the cytotoxicity and enhanced the hemocompatibility (lower hemolysis activity, longer plasma clotting time) of the gene carriers. PAA segments in the copolymer impart pH sensitivity by allowing deshielding of the core in acidic solution. Therefore, the transfection efficiency of polyplexes at pH 6.5 was better than at pH 7.0, from ß-galactosidase assay, and for all PAA-b-PSBMA tested. These results were supported by more favorable physicochemical properties in acidic solution (zeta potential, particle size, and interactions between the polymer and DNA). Thus, the results of this study offer a potential route to the development of efficient and nontoxic pH-sensitive gene carriers.


Asunto(s)
Polímeros/química , ADN , Técnicas de Transferencia de Gen , Concentración de Iones de Hidrógeno , Iminas/química , Metacrilatos/química , Nylons/química , Polietilenos/química
5.
Langmuir ; 31(9): 2861-9, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25680392

RESUMEN

We report a novel biomacromolecular formula for the design of hemocompatible gel interfaces of N-isopropylacrylamide (NIPAAm) and mixed-charge pairs of [2-(methacryloyloxy)ethyl]trimethylammonium (TMA) and 3-sulfopropyl methacrylate (SA) with overall electrical neutrality. The study stresses on how well-defined compositions of nonionic NIPAAm and pseudozwitterionic TMA/SA in the poly(NIPAAm-co-TMA/SA) hydrogels along with environmental conditions (temperature, ionic strength, and solution pH) affect swelling and adhesion of biofoulants on their surfaces. When challenged with plasma proteins, bacteria, recalcified platelets, or whole blood, stimuli-responsive hydrogels better resisted their adhesion as the content of mixed charges in the copolymer increased, to reach nonbiofouling for the gels made of 100% TMA/SA. The low hemolytic activity (0.5%) associated with a long plasma clotting time (10 min) suggests excellent hemocompatibility excellent hemocompatibility. Finally, hydrogels containing both NIPAAm and TMA/SA tend to exhibit preferential adhesion of leukocytes.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Polímeros/química , Polímeros/farmacología , Acrilamidas/química , Adhesión Bacteriana/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Coagulación Sanguínea/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Hidrogeles/química , Concentración de Iones de Hidrógeno , Leucocitos/citología , Leucocitos/efectos de los fármacos , Metacrilatos/química , Modelos Moleculares , Conformación Molecular , Concentración Osmolar , Temperatura
6.
Langmuir ; 30(30): 9139-46, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25022949

RESUMEN

A PEGylated 96-well polystyrene (PS) microplate was first introduced for applications in high-throughput screening for selective blood typing to minimize the risks in blood transfusions. Herein, we present a hemocompatible PS 96-well microplate with adjustable PEGylated hyperbranch brush coverage prepared by ozone pretreated activation and thermally induced surface PEGylation. The grafting properties, hydration capacity, and blood compatibility of the PEGylated hyperbrush immobilized PS surfaces in human blood were illustrated by the combined chemical and physical properties of the surface, and the dependence of the specific absorption of human plasma fibrinogen onto the PEGylated surfaces on the grafting density was analyzed by monoclonal antibodies. The surface coverage of PEGylated brushes plays a major role in the bioadhesive properties of modified PS microplates, which in turn control the level of agglutination sensitivity in blood typing. The bioadhesive resistance toward proteins, platelets, and erythrocytes in human whole blood showed a correlation to the controlled hydration properties of the PEGylated hyperbrush-modified surfaces. Therefore, we suggested that the surface coverage of PEGylated hyperbrushes on PS surfaces can increase the sensitivity of cross-matching blood agglutination by up to 16-fold compared to that of the conventional 96-well virgin PS due to the regulated biorecognition of hematocrit and antibodies of the PEGylated hyperbrush-modified surfaces.


Asunto(s)
Materiales Biocompatibles/química , Tipificación y Pruebas Cruzadas Sanguíneas/métodos , Polietilenglicoles/química , Poliestirenos/química , Humanos
7.
Colloids Surf B Biointerfaces ; 151: 372-383, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28063289

RESUMEN

This work discusses the impact of the charge bias and the hydrophilicity on the human blood compatibility of pseudozwitterionic biomaterial gels. Four series of hydrogels were prepared, all containing negatively-charged 3-sulfopropyl methacrylate (SA), and either acrylamide, N-isopropylacrylamide, 2-dimethylaminoethyl methacrylate (DMAEMA) or [2-(methacryloyloxy)ethyl]trimethylammonium (TMA), to form SnAm, SnNm, SnDm or SnTm hydrogels, respectively. An XPS analysis proved that the polymerization was well controlled from the initial monomer ratios. All gels present high surface hydrophilicity, but varying bulk hydration, depending on the nature/content of the comonomer, and on the immersion medium. The most negative interfaces (pure SA, S7A3, S5A5) showed significant fibrinogen adsorption, ascribed to the interactions of the αC domains of the protein with the gels, then correlated to considerable platelet adhesion; but low leukocyte/erythrocyte attachments were measured. Positive gels (excess of DMAEMA or TMA) are not hemocompatible. They mediate protein adsorption and the adhesion of human blood cells, through electrostatic attractive interactions. The neutral interfaces (zeta potential between -10mV and +10mV) are blood-inert only if they present a high surface and bulk hydrophilicity. Overall, this study presents a map of the hemocompatible behavior of hydrogels as a function of their surface charge-bias, essential to the design of blood-contacting devices.


Asunto(s)
Aminas/química , Materiales Biocompatibles/química , Eritrocitos/efectos de los fármacos , Leucocitos/efectos de los fármacos , Metacrilatos/química , Acrilamidas/química , Adsorción , Eritrocitos/citología , Fibrinógeno/química , Humanos , Hidrogeles/química , Leucocitos/citología , Adhesividad Plaquetaria , Dominios Proteicos , Electricidad Estática , Propiedades de Superficie , Agua/química
8.
Acta Biomater ; 40: 130-141, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26826530

RESUMEN

UNLABELLED: The present study serves three main functions. First, it presents a novel random copolymer, made of octadecyl acrylate hydrophobic blocks and 2-(dimethylamino)ethyl methacrylate hydrophilic groups, and it zwitterionic form. Second, random copolymer and zwitterionic random copolymer, OmDn and Z-OmDn, are used to modify polypropylene membranes by evaporation coating. Our investigations unveil that this method leads to sufficiently stable self-assembling provided a minimum number of hydrophobic repeat units of 77, which also corresponds to a hydrophobic degree of 74%. Third, antifouling and hemocompatible properties of membranes are thoroughly investigated using all types of blood cells separately, as well as challenging membranes against whole blood in static and dynamic conditions. Membranes modified with zwitterionic copolymer containing 26% of zwitterionic groups are shown to be highly antifouling and hemocompatible, for a coating density as low as 0.2mg/cm(2). Their application in a specially designed blood filtration module enabled to almost totally inhibit blood cells interactions with membrane material, as well as to importantly reduce platelet activation in the permeate (2.5-fold reduction). STATEMENT OF SIGNIFICANCE: The design of new zwitterionic copolymer material is proposed and demonstrated in this study. It was showed that hydrophobicoctadecyl acrylate segments can be introduced in the zwitterioniccarboxybetaine polymer chain with a well-controlled random sequence. Stable, efficient, and effective surface zwitterionization of hydrophobic polypropylene are obtained via grafting onto approach by evaporation-induced self-assembling coating. In the perspective of potential application, hemocompatible blood filtration was demonstrated with the excellent results of non-activated platelets obtained. DESIGN: New zwitterionicmaterial, amphiphatic carboxybetaine copolymers. DEVELOPMENT: Evaporation-induced self-assembling grafting. APPLICATION: Hemocompatible blood filtration.


Asunto(s)
Plaquetas/metabolismo , Etilaminas/química , Hemofiltración , Ensayo de Materiales , Membranas Artificiales , Metacrilatos/química , Activación Plaquetaria , Polipropilenos/química , Betaína/química , Humanos
9.
Colloids Surf B Biointerfaces ; 127: 54-64, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25638723

RESUMEN

In this study, a facile and effective strategy is presented for the preparation of a series of zwitterionic poly(sulfobetaine methacrylate) (pSBMA)-grafted organic and inorganic biomaterials with well-controlled haemocompatibility via intuitive thermal-induced graft polymerization. The research focused on the effects of zwitterionic surface packing density on human blood compatibility by varying the SBMA monomer concentration on the silanized silicon wafer substrates. A 0.2 M SBMA monomer solution was found to not only produce Si wafer surfaces with ideal zwitterionic surface packing density and uniform, evenly distributed pSBMA grafting coverage but also yield optimal hydrophilicity and haemocompatibility. SBMA monomer concentrations lower and greater than 0.2 M yielded a zwitterionic surface with low grafting coverage. This study also demonstrated that the same, intuitive thermal-induced graft polymerization strategy could be applied to a variety of organic polymeric, inorganic ceramic and metal oxide biomaterials to improve haemocompatibility. Among the tested organic and inorganic materials, however, it was found that inorganic biomaterials demonstrated greater resistance to protein and platelet adhesions. It was hypothesized that the ozone treatment, which generated an abundance of hydroxide groups on inorganic substrate interfaces, might have given the inorganic biomaterials a more stable silanized layer yielding a preferable reaction state and resulted in sturdier and more durable pSBMA grafting.


Asunto(s)
Materiales Biocompatibles/farmacología , Compuestos Inorgánicos/farmacología , Ensayo de Materiales/métodos , Compuestos Orgánicos/farmacología , Temperatura , Adsorción , Plaquetas/efectos de los fármacos , Plaquetas/ultraestructura , Fibrinógeno/metabolismo , Humanos , Iones , Metacrilatos/farmacología , Microscopía de Fuerza Atómica , Espectroscopía de Fotoelectrones , Propiedades de Superficie
10.
J Biomater Sci Polym Ed ; 25(14-15): 1558-72, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24894872

RESUMEN

In this study, a pseudozwitterionic surface bearing positively and negatively mixed charged moieties was developed as a potential hemocompatible material for biomedical applications. In this work, hemocompatility of pseudozwitterionic surface prepared from copolymerization of negatively charged 3-sulfopropyl methacrylate (SA) and positively charged [2-(methacryloyloxy)ethyl] trimethylammonium (TMA) was delineated. Mixed charge distribution in the prepared poly(TMA-co-SA)-grafted surface can be controlled by regulating TMA and SA monomer ratios via surface-initiated atom transfer radical polymerization. The effects of grafting composition and charge bias variations on blood compatibility of poly(TMA-co-SA)-grafted surface were reported. The protein adsorption on different poly(TMA-co-SA)-grafted surfaces from human plasma protein (fibrinogen, HSA, and γ-globulin) solutions was evaluated using an enzyme-linked immunosorbent assay. Blood platelet adhesion and time measurements on plasma clotting were conducted to determine the platelet activation on the grafted surface. It was found that the protein resistance and anti-blood cell adhesion of prepared surface can be precisely controlled by controlling the charge balance of TMA/SA compositions. In addition, different charge bias variations on the poly(TMA-co-SA)-grafted surface would induce electrostatic interactions between plasma proteins and prepared surfaces which lead to adsorptions of interfacial protein and blood cells, plasma clotting, and blood cell hemolysis. Results from this study suggest that the hemocompatility of mixed charged poly(TMA-co-SA)-grafted surface depends on the charge bias level. This provides a great potential for designing biomaterial with unique surface chemical structure which could be used in contact with human blood.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Metacrilatos/química , Polímeros/química , Polímeros/farmacología , Adsorción , Proteínas Sanguíneas/química , Adhesión Celular/efectos de los fármacos , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Humanos , Adhesividad Plaquetaria/efectos de los fármacos , Polimerizacion , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA