Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 273: 116098, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368757

RESUMEN

Plastic waste accumulation and its degradation into microplastics (MPs) and nanoplastics (NPs) pose environmental concerns. Previous studies have indicated that polystyrene (PS)-MPs harm living animals. Extracellular vesicles (EVs) are associated with metabolic reprogramming and mitochondrial dysfunction in various kidney diseases. In this article, we evaluated how PS-MPs affected tubular cells and fibroblasts. The results demonstrated that PS-MPs increased EV production in human tubular cells and caused endoplasmic reticulum (ER) stress-related proteins without inducing inflammation-related proteins in human tubular cells. The uptake of PS-MPs and incubation with the conditioned medium of PS-MPs induced reactive oxygen species (ROS) production and ER stress-related proteins in fibroblast cells. The fibroblast cells treated with the conditioned medium of PS-MPs also increased the expression of fibrosis-related proteins. Our findings suggested that the expression of EV-related markers increased in tubular cells via Beclin 1 after PS-MP treatment. In addition, PS-MPs induced ROS production in vitro and in vivo. We found that PS-MPs also altered the expression of EV markers in urine, and CD63 expression was also increased in vitro and in vivo after PS-MP treatment. In conclusion, PS-MP-induced EVs lead to ER stress-related proteins, ROS production and fibrosis-related proteins in tubular cells and fibroblasts.


Asunto(s)
Vesículas Extracelulares , Microplásticos , Animales , Humanos , Microplásticos/toxicidad , Plásticos , Poliestirenos/toxicidad , Medios de Cultivo Condicionados , Especies Reactivas de Oxígeno , Riñón , Fibroblastos , Fibrosis
2.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138322

RESUMEN

Plastic products are inexpensive, convenient, and are have many applications in daily life. We overuse plastic-related products and ineffectively recycle plastic that is difficult to degrade. Plastic debris can be fragmented into smaller pieces by many physical and chemical processes. Plastic debris that is fragmented into microplastics or nanoplastics has unclear effects on organismal systems. Recently, this debris was shown to affect biota and to be gradually spreading through the food chain. In addition, studies have indicated that workers in plastic-related industries develop many kinds of cancer because of chronic exposure to high levels of airborne microplastics. Microplastics and nanoplastics are everywhere now, contaminating our water, air, and food chain. In this review, we introduce a classification of plastic polymers, define microplastics and nanoplastics, identify plastics that contaminate food, describe the damage and diseases caused by microplastics and nanoplastics, and the molecular and cellular mechanisms of this damage and disease as well as solutions for their amelioration. Thus, we expect to contribute to the understanding of the effects of microplastics and nanoplastics on cellular and molecular mechanisms and the ways that the uptake of microplastics and nanoplastics are potentially dangerous to our biota. After understanding the issues, we can focus on how to handle the problems caused by plastic overuse.


Asunto(s)
Nanoestructuras/química , Plásticos/química , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Genotipo , Humanos , Mutación/genética , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio/farmacología
3.
J Hazard Mater ; 430: 128431, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35150991

RESUMEN

Microplastics (MPs) pollution has become a serious environmental issue worldwide, but its potential effects on health remain unknown. The administration of polystyrene MPs (PS-MPs) to mice for eight weeks impaired learning and memory behavior. PS-MPs were detected in the brain especially in the hippocampus of these mice. Concurrently, the hippocampus had decreased levels of immediate-early genes, aberrantly enhanced synaptic glutamate AMPA receptors, and elevated neuroinflammation, all of which are critical for synaptic plasticity and memory. Interestingly, ablation of the vagus nerve, a modulator of the gut-brain axis, improved the memory function of PS-MPs mice. These results indicate that exposure to PS-MPs in mice alters the expression of neuronal activity-dependent genes and synaptic proteins, and increases neuroinflammation in the hippocampus, subsequently causing behavioral changes through the vagus nerve-dependent pathway. Our findings shed light on the adverse impacts of PS-MPs on the brain and hippocampal learning and memory.


Asunto(s)
Microplásticos , Poliestirenos , Animales , Ácido Glutámico , Hipocampo , Ratones , Plásticos , Poliestirenos/toxicidad
4.
Environ Health Perspect ; 129(5): 57003, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33956507

RESUMEN

BACKGROUND: Understanding the epidemic of chronic kidney disease of uncertain etiology may be critical for health policies and public health responses. Recent studies have shown that microplastics (MPs) contaminate our food chain and accumulate in the gut, liver, kidney, muscle, and so on. Humans manufacture many plastics-related products. Previous studies have indicated that particles of these products have several effects on the gut and liver. Polystyrene (PS)-MPs (PS-MPs) induce several responses, such as oxidative stress, and affect living organisms. OBJECTIVES: The aim of this study was to investigate the effects of PS-MPs in kidney cells in vitro and in vivo. METHODS: PS-MPs were evaluated in human kidney proximal tubular epithelial cells (HK-2 cells) and male C57BL/6 mice. Mitochondrial reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, inflammation, and autophagy were analyzed in kidney cells. In vivo, we evaluated biomarkers of kidney function, kidney ultrastructure, muscle mass, and grip strength, and urine protein levels, as well as the accumulation of PS-MPs in the kidney tissue. RESULTS: Uptake of PS-MPs at different concentrations by HK-2 cells resulted in higher levels of mitochondrial ROS and the mitochondrial protein Bad. Cells exposed to PS-MPs had higher ER stress and markers of inflammation. MitoTEMPO, which is a mitochondrial ROS antioxidant, mitigated the higher levels of mitochondrial ROS, Bad, ER stress, and specific autophagy-related proteins seen with PS-MP exposure. Furthermore, cells exposed to PS-MPs had higher protein levels of LC3 and Beclin 1. PS-MPs also had changes in phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (AKT)/mitogen-activated protein kinase (mTOR) signaling pathways. In an in vivo study, PS-MPs accumulated and the treated mice had more histopathological lesions in the kidneys and higher levels of ER stress, inflammatory markers, and autophagy-related proteins in the kidneys after PS-MPs treatment by oral gavage. CONCLUSIONS: The results suggest that PS-MPs caused mitochondrial dysfunction, ER stress, inflammation, and autophagy in kidney cells and accumulated in HK-2 cells and in the kidneys of mice. These results suggest that long-term PS-MPs exposure may be a risk factor for kidney health. https://doi.org/10.1289/EHP7612.


Asunto(s)
Riñón , Microplásticos , Poliestirenos , Animales , Células Epiteliales/efectos de los fármacos , Humanos , Riñón/citología , Riñón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microplásticos/toxicidad , Poliestirenos/toxicidad
5.
Nanomedicine (Lond) ; 12(22): 2741-2756, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28884615

RESUMEN

AIM: We used resveratrol (Res)-loaded nanoparticles (Res NPs) as a novel method for improving the pharmacokinetic properties of Res and analyzed the effect of Res NPs in chronic kidney disease (CKD). MATERIALS & METHODS: We coupled anti-kidney injury molecule-1 antibodies to Res NPs and analyzed safety and efficacy. RESULTS: Res NPs had low toxicity and induced autophagy. Res NPs inhibited the NLRP3 inflammasome and IL-1ß secretion. Higher NLRP3 expression levels were observed in peripheral blood monocytic cells of CKD patients than healthy individuals. Treatment with kidney injury molecule-1-Res NPs significantly reduced creatinine and protected against tubulointerstitial injury in a murine model of CKD. CONCLUSION: Res NPs through NLRP3 inflammasome attenuation and autophagy induction may be as a strategy to prevent CKD.


Asunto(s)
Receptor Celular 1 del Virus de la Hepatitis A/química , Nanopartículas/química , Insuficiencia Renal Crónica/tratamiento farmacológico , Estilbenos/administración & dosificación , Estilbenos/química , Animales , Anticuerpos/química , Autofagia/efectos de los fármacos , Línea Celular , Supervivencia Celular , Creatinina/metabolismo , Portadores de Fármacos/química , Liberación de Fármacos , Células Epiteliales/citología , Receptor Celular 1 del Virus de la Hepatitis A/inmunología , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Túbulos Renales/citología , Ácido Láctico/química , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nefritis Intersticial/tratamiento farmacológico , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Resveratrol , Estilbenos/farmacocinética
6.
Nanoscale ; 7(2): 736-46, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25429417

RESUMEN

Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design.


Asunto(s)
Nanosferas/química , Poliestirenos/química , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/efectos de los fármacos , Cationes/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Nanosferas/toxicidad , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
7.
Radiat Res ; 175(5): 547-60, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21388295

RESUMEN

Osteosarcoma is the most common primary malignant bone tumor, occurring mainly in children and adolescents, and survival largely depends on their response to chemotherapy. However, the risk of relapse and adverse outcomes is still high. We investigated the synergistic anti-cancer effects of ionizing radiation combined with arsenic trioxide (ATO) and the mechanisms underlying apoptosis or autophagy induced by combined radiation and ATO treatment in human osteosarcoma cells. We found that exposure to radiation increased the population of HOS cells in the G(2)/M phase within 12 h in a time-dependent manner. Radiation combined with ATO induced a significantly prolonged G(2)/M arrest, consequently enhancing cell death. Furthermore, combined treatment resulted in enhanced ROS generation compared to treatment with ATO or radiation alone. The enhanced cytotoxic effect of combined treatment occurred from the increased induction of autophagy and apoptosis through inhibition of the PI3K/Akt signaling pathway in HOS cells. The combined treatment of HOS cells pretreated with Z-VAD, 3-MA or PEG-catalase resulted in a significant reduction of cytotoxicity. In addition, G(2)/M arrest and ROS generation could be involved in the underlying mechanisms. The data suggest that a combination of radiation and ATO could be a new potential therapeutic strategy for the treatment of osteosarcoma.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Arsenicales/farmacología , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Osteosarcoma/patología , Óxidos/farmacología , Trióxido de Arsénico , Catalasa/metabolismo , Línea Celular Tumoral , Daño del ADN , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Humanos , Polietilenglicoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA