Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cytotherapy ; 19(3): 419-432, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28017598

RESUMEN

Large numbers of human mesenchymal stromal cells (MSCs) used for a variety of applications in tissue engineering and cell therapy can be generated by scalable expansion in a bioreactor using microcarriers (MCs) systems. However, the enzymatic digestion process needed to detach cells from the growth surface can affect cell viability and potentially the potency and differentiation efficiency. Thus, the main aim of our study was to develop biocompatible and biodegradable MCs that can support high MSC yields while maintaining their differentiation capability and potency. After cell expansion, the cells that covered MCs can be directly implanted in vivo without the need for cell harvesting or use of scaffold. Poly-ε-caprolactone (PCL) is known as a biocompatible and biodegradable material. However, it cannot be used for generation of MCs because its high density (1.14 g/cm3) would exclude its applicability for suspension MCs in stirred reactors. In this article, we describe expansion and potency of MSCs propagated on low-density (1.06 g/cm3) porous PCL MCs coated with extracellular matrices (LPCLs) in suspended stirred reactors. Using these LPCLs, cell yields of about 4 × 104 cells/cm2 and 7- to 10-fold increases were obtained using four different MSC lines (bone marrow, cord blood, fetal and Wharton's jelly). These yields were comparable with those obtained using non-degradable MCs (Cytodex 3) and higher than two-dimensional monolayer (MNL) cultures. A fed-batch process, which demonstrated faster cell expansion (4.5 × 104 cells/cm2 in 5 days as compared with 7 days in batch culture) and about 70% reduction in growth media usage, was developed and scaled up from 100-mL spinner flask to 1-L controlled bioreactor. Surface marker expression, trilineage differentiation and clonogenic potential of the MSCs expanded on LPCL were not affected. Cytokine secretion kinetics, which occurred mostly during late logarithmic phase, was usually comparable with that obtained in Cytodex 3 cultures and higher than MNL cultures. In conclusion, biodegradable LPCL can be used to efficiently expand a variety of MSC lines in stirred scalable reactors in a cost-effective manner while maintaining surface markers expression, differentiation capability and high levels of cytokine secretion. This study is the first step in testing these cell-biodegradable porous MC aggregates for tissue engineering and cell therapy, such as bone and cartilage regeneration, or wound healing.


Asunto(s)
Implantes Absorbibles , Técnicas de Cultivo Celular por Lotes/métodos , Proliferación Celular , Citocinas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Poliésteres/química , Andamios del Tejido/química , Reactores Biológicos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Cultivadas , Medios de Cultivo/metabolismo , Dextranos/química , Humanos , Ensayo de Materiales , Microtecnología/instrumentación , Ingeniería de Tejidos/métodos
2.
Cytotherapy ; 18(10): 1332-44, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27503763

RESUMEN

BACKGROUND AIMS: Human mesenchymal stromal cells or marrow stromal cells (MSCs) are of great interest for bone healing due to their multi-potency and trophic effects. However, traditional MSC expansion methods using 2-dimensional monolayer (MNL) flasks or cell stacks are limited by labor-intensive handling, lack of scalability, the need for enzymatic cell harvesting and the need for attachment to a scaffold before in vivo delivery. Here, we present a biodegradable microcarrier and MSC bioprocessing system that may overcome the abovementioned challenges. METHODS: We cultured human early MSCs (heMSCs) on biodegradable polycaprolactone microcarriers (PCL MCs) coated with extracellular matrix (ECM) and evaluated the in vitro osteogenic differentiation and in vivo bone formation capacity of ECM-coated PCL MC-bound heMSCs compared with conventional MNL-cultured cells. RESULTS: We found that heMSCs proliferate well on PCL MCs coated with a fibronectin, poly-l-lysine, and fibronectin (FN+PLL+FN) coating (cPCL MCs). During in vitro osteogenic induction, heMSCs cultured on cPCL MCs displayed a 68% increase in specific calcium deposition compared with cultures on MNL. In a mouse ectopic mineralization model, bone mass was equivalent for MNL-expanded and cPCL MC-bound heMSC implants but higher in both cases when compared with cell-free cPCL MC implants at 16 weeks post-implantation. In summary, compared with MNL cultures, biodegradable MC MSC cultures provide the benefits of large-scale expansion of cells and can be delivered in vivo, thereby eliminating the need for cell harvesting and use of scaffolds for cell delivery. These results highlight the promise of delivering heMSCs cultured on cPCL MCs for bone applications.


Asunto(s)
Implantes Absorbibles , Proliferación Celular , Matriz Extracelular/química , Células Madre Mesenquimatosas/fisiología , Miniaturización , Osteogénesis/fisiología , Poliésteres/química , Andamios del Tejido/química , Animales , Regeneración Ósea/efectos de los fármacos , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Microtecnología , Miniaturización/instrumentación , Miniaturización/métodos , Osteogénesis/efectos de los fármacos , Poliésteres/farmacología
3.
J Cell Biochem ; 115(4): 794-803, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24265214

RESUMEN

Wound healing is a major problem in diabetic patients and current methods of treatment have met with limited success. Since skin cell renewal is under the control of mesenchymal stem cells (MSCs) treatment of wounds has been attempted with the application of exogenous bone marrow MSCs (hBMMSCs). However, hBMMSCs have the limitations of painful harvest, low cell numbers and short-lived stemness properties unlike MSCs from the Wharton's jelly of human umbilical cords (hWJSCs). Since nanoscaffolds provide three dimensional architectural patterns that mimic in vivo stem cell niches and aloe vera has antibacterial properties we evaluated the use of an aloe vera-polycaprolactone (AV/PCL) nanoscaffold impregnated with green fluorescent protein (GFP)-labeled hWJSCs (GFP-hWJSCs + AV/PCL) or its conditioned medium (hWJSC-CM + AV/PCL) for healing of excisional and diabetic wounds. In skin fibroblast scratch-wound assays exposed to GFP-hWJSCs + AV/PCL or hWJSC-CM + AV/PCL, fibroblasts migrated significantly faster from edges of scratches into vacant areas together with increased secretion of collagen I and III, elastin, fibronectin, superoxide dismutase, and metalloproteinase-1 (MMP-1) compared to controls. After one application of GFP-hWJSCs + AV/PCL or hWJSC-CM + AV/PCL excisional and diabetic wounds in mice showed rapid wound closure, reepithelialization, and increased numbers of sebaceous glands and hair follicles compared to controls. The same wounds exposed to GFP-hWJSCs + AV/PCL or hWJSC-CM + AV/PCL also showed positive keratinocyte markers (cytokeratin, involucrin, filaggrin) and increased expression of ICAM-1, TIMP-1, and VEGF-A compared to controls. AV/PCL nanoscaffolds in combination with hWJSCs appear to have synergistic benefits for wound healing.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Células Madre Mesenquimatosas/metabolismo , Nanoestructuras/química , Cicatrización de Heridas , Aloe/química , Animales , Vendajes , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Femenino , Proteínas Filagrina , Regulación de la Expresión Génica , Humanos , Ratones SCID , Poliésteres/farmacología , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética
4.
Stem Cells ; 27(1): 126-37, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18832592

RESUMEN

Mesenchymal stem cells (MSCs) from human adult bone marrow (haMSCs) represent a promising source for bone tissue engineering. However, their low frequencies and limited proliferation restrict their clinical utility. Alternative postnatal, perinatal, and fetal sources of MSCs appear to have different osteogenic capacities, but have not been systematically compared with haMSCs. We investigated the proliferative and osteogenic potential of MSCs from human fetal bone marrow (hfMSCs), human umbilical cord (hUCMSCs), and human adult adipose tissue (hATMSCs), and haMSCs, both in monolayer cultures and after loading into three-dimensional polycaprolactone-tricalcium-phosphate scaffolds.Although all MSCs had comparable immunophenotypes, only hfMSCs and hUCMSCs were positive for the embryonic pluripotency markers Oct-4 and Nanog. hfMSCs expressed the lowest HLA-I level (55% versus 95%-99%) and the highest Stro-1 level (51% versus 10%-27%), and had the greatest colony-forming unit-fibroblast capacity (1.6x-2.0x; p < .01) and fastest doubling time (32 versus 54-111 hours; p < .01). hfMSCs had the greatest osteogenic capacity, as assessed by von-Kossa staining, alkaline phosphatase activity (5.1x-12.4x; p < .01), calcium deposition (1.6x-2.7x in monolayer and 1.6x-5.0x in scaffold culture; p < .01), calcium visualized on micro-computed tomography (3.9x17.6x; p < .01) and scanning electron microscopy, and osteogenic gene induction. Two months after implantation of cellular scaffolds in immunodeficient mice, hfMSCs resulted in the most robust mineralization (1.8x-13.3x; p < .01).The ontological and anatomical origins of MSCs have profound influences on the proliferative and osteogenic capacity of MSCs. hfMSCs had the most proliferative and osteogenic capacity of the MSC sources, as well as being the least immunogenic, suggesting they are superior candidates for bone tissue engineering.


Asunto(s)
Células Madre Adultas/citología , Huesos/fisiología , Feto/citología , Células Madre Mesenquimatosas/citología , Osteogénesis , Ingeniería de Tejidos , Tejido Adiposo/citología , Adulto , Células Madre Adultas/efectos de los fármacos , Animales , Huesos/efectos de los fármacos , Fosfatos de Calcio/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Implantes Experimentales , Lactante , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/ultraestructura , Ratones , Ratones SCID , Persona de Mediana Edad , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Poliésteres/farmacología , Andamios del Tejido , Cordón Umbilical/citología
5.
J Tissue Eng Regen Med ; 12(7): 1556-1566, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29700978

RESUMEN

Polyethylene glycol-linked multiwalled carbon nanotube-coated poly-acrylamide hydrogel (CNT-PA) was customized to mimic human liver stiffness and nanostructured surface in liver cells for modulating differentiation of human amniotic epithelial cells (hAECs) into functional hepatocyte-like cells (HLCs) in vitro. This composite of CNT-PA matrix enhanced the hepatic differentiation of hAECs into HLCs with suppression of pluripotent markers and up-regulation of hepatic markers at both transcript and protein levels. Furthermore, the HLCs on CNT-PA demonstrated hepatocytic functions in terms of albumin secretion, higher uptake of indocyanine green, and comparable CYP3A4 enzymatic function and inducibility when matched against HepG2 cells. Taken together, CNT-PA provides an efficient and scalable platform for the expansion of HLCs from hAECs and could be explored further for downstream development.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Hepatocitos/metabolismo , Hidrogeles , Nanotubos de Carbono/química , Polietilenglicoles , Amnios , Antígenos de Diferenciación/biosíntesis , Células Epiteliales/citología , Células Hep G2 , Hepatocitos/citología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología
6.
Tissue Eng Part A ; 19(7-8): 893-904, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23102089

RESUMEN

Clinical translation of bone tissue engineering approaches for fracture repair has been hampered by inadequate vascularization required for maintaining cell survival, skeletal regeneration, and remodeling. The potential of vasculature formation within tissue-engineered grafts depends on various factors, including an appropriate choice of scaffold and its microarchitectural design for the support of tissue ingrowth and vessel infiltration, vasculogenic potential of cell types and mechanostimulation on cells to enhance cytokine expression. Here, we demonstrated the effect of biomechanical stimulation on vasculogenic and bone-forming capacity of umbilical-cord-blood endothelial progenitor cells (UCB-EPC) and human fetal bone marrow-derived mesenchymal stem cell (hfMSC) seeded within macroporous scaffolds and cocultured dynamically in a biaxial bioreactor. Dynamically cultured EPC/hfMSC constructs generated greater mineralization and calcium deposition consistently over 14 days of culture (1.7-fold on day 14; p<0.05). However, in vitro vessel formation was not observed as compared to an extensive EPC-vessel network formed under static culture on day 7. Subsequent subcutaneous implantations in NOD/SCID mice showed 1.4-fold higher human:mouse cell chimerism (p<0.001), with a more even cellular distribution throughout the dynamically cultured scaffolds. In addition, there was earlier evidence of vessel infiltration into the scaffold and a trend toward increased ectopic bone formation, suggesting improved efficacy and cellular survival through early vascularization upon biomechanical stimulation. The integrative use of bioreactor culture systems with macroporous scaffolds and cocultured osteogenic and vasculogenic cells promotes maturation of EPC/hfMSC-scaffold grafts necessary for vascularized bone tissue engineering applications.


Asunto(s)
Reactores Biológicos , Huesos/fisiología , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica , Células Madre/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Huesos/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Fosfatos de Calcio/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Feto/citología , Humanos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones SCID , Neovascularización Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Poliésteres/farmacología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Cordón Umbilical/citología
7.
Biomaterials ; 33(1): 237-46, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21963283

RESUMEN

A bioinspired silification approach was successfully used to encapsulate fluorescent conjugated polymers inside silica-shell cross-linked polymeric micelles (CP-SSCL) in the highly benign synthesis environment of room temperature and near-neutral aqueous environment. Four different conjugated polymers were employed to demonstrate the versatility of the bioinspired silification, resulting in the formation of CP-SSCL with different emission wavelengths across the visible spectrum. The CP-SSCL are characterized by a large absorption coefficient and high quantum yield, indicating that they exhibit the required high fluorescence brightness for cellular imaging application. In addition, the CP-SSCL also exhibit a high colloidal stability and low cytotoxicity. The in vitro studies of using MDA-MB-231 breast cancer cells show that the CP-SSCL are successfully uptaken by the cancer cells and located at the cytoplasm of the cells. Furthermore, by conjugating folic acid on their surfaces, the uptake of CP-SSCL by MDA-MB-231 cells was enhanced significantly, suggesting their great potential for targeted imaging and early detection of cancer cells.


Asunto(s)
Diagnóstico por Imagen/métodos , Micelas , Polímeros/química , Dióxido de Silicio/química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Línea Celular Tumoral , Humanos , Polímeros/metabolismo
8.
Biomaterials ; 31(33): 8684-95, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20739062

RESUMEN

Bioreactors provide a dynamic culture system for efficient exchange of nutrients and mechanical stimulus necessary for the generation of effective tissue engineered bone grafts (TEBG). We have shown that biaxial rotating (BXR) bioreactor-matured human fetal mesenchymal stem cell (hfMSC) mediated-TEBG can heal a rat critical sized femoral defect. However, it is not known whether optimal bioreactors exist for bone TE (BTE) applications. We systematically compared this BXR bioreactor with three most commonly used systems: Spinner Flask (SF), Perfusion and Rotating Wall Vessel (RWV) bioreactors, for their application in BTE. The BXR bioreactor achieved higher levels of cellularity and confluence (1.4-2.5x, p < 0.05) in large 785 mm(3) macroporous scaffolds not achieved in the other bioreactors operating in optimal settings. BXR bioreactor-treated scaffolds experienced earlier and more robust osteogenic differentiation on von Kossa staining, ALP induction (1.2-1.6×, p < 0.01) and calcium deposition (1.3-2.3×, p < 0.01). We developed a Micro CT quantification method which demonstrated homogenous distribution of hfMSC in BXR bioreactor-treated grafts, but not with the other three. BXR bioreactor enabled superior cellular proliferation, spatial distribution and osteogenic induction of hfMSC over other commonly used bioreactors. In addition, we developed and validated a non-invasive quantitative micro CT-based technique for analyzing neo-tissue formation and its spatial distribution within scaffolds.


Asunto(s)
Reactores Biológicos , Huesos/fisiología , Técnicas de Cultivo de Célula/instrumentación , Células Madre Fetales/citología , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/instrumentación , Huesos/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Fosfatos de Calcio/farmacología , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Madre Fetales/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Poliésteres/farmacología , Andamios del Tejido/química , Microtomografía por Rayos X
9.
Tissue Eng Part A ; 16(8): 2485-95, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20214450

RESUMEN

Antibody-conjugated surfaces are being studied for cardiovascular implant applications to capture endothelial progenitor cells and promote endothelialization. However, despite the large amount of literature on endothelial progenitor cell capture efficiency, little effort has been made to understand acute blood responses to the modified surfaces. We hypothesize that CD34 antibody conjugation passivates surfaces against procoagulatory events, and thus improves hemocompatibility. To test this hypothesis, we subjected the modified films to hemocompatibility tests to evaluate contact activation, platelet adhesion and activation, as well as whole blood clotting response to the films. Here, we demonstrate the alteration of blood responses due to polyacrylic acid (PAAc) engraftment and subsequent antibody conjugation on biaxially stretched polycaprolactone (PCL) films. Compared to PCL, PAAc-engrafted PCL (PCL-PAAc) and CD34-antibody-conjugated films (PCL-PAAC-CD34) resulted in a four- to ninefold (p < 0.001) reduced platelet activation. PCL-PAAc, however, resulted in an increased contact activation on thromboelastography, and a poorer blood compatibility index assay (43.4% +/- 2.3% vs. 60.9% +/- 2.5%, p < 0.05). PCL-PAAC-CD34, on the other hand, resulted in delayed clot formation (r = 19.3 +/- 1.5, k = 6.8 +/- 0.6 min) and reduced platelet adhesion and activation, and yielded the highest blood compatibility index score, indicating least thrombogenicity (69.3% +/- 3.2%). Our results suggest that CD34 antibody conjugation significantly improved the hemocompatibility of PAAc-conjugated PCL.


Asunto(s)
Anticuerpos/química , Anticuerpos/inmunología , Antígenos CD34/inmunología , Coagulación Sanguínea/fisiología , Materiales Biocompatibles Revestidos/química , Adhesividad Plaquetaria/inmunología , Ingeniería de Tejidos/instrumentación , Materiales Biocompatibles , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/inmunología , Células Cultivadas , Humanos , Ensayo de Materiales , Tamaño de la Partícula , Propiedades de Superficie
10.
Biomaterials ; 30(12): 2241-51, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19200592

RESUMEN

Cell-sheet assemblies are currently being studied for tissue engineering. However, tissues engineered from completely biological cell sheets lack substrate cues and possess poor mechanical strength. Recent studies demonstrate the use of synthetic bioresorbable films as scaffolds that may address these issues. Here, we describe the application of a micro-thin, biaxially-stretched polycaprolactone (muXPCL) with surface modifications for layered tissue engineering, and present the results of biphasic cell-sheet constructs using surfaces optimised for specific cell types. Polyacrylic acid (PAAc) was grafted onto muXPCL film surfaces by low-pressure plasma immobilisation. This provided a surface suitable for perivascular cells, forming the medial compartment. Subsequently, endothelial progenitor cell (EPC)-selective CD34 antibody was conjugated onto the reverse surface (intimal compartment) to select and anchor EPCs for improved adhesion and proliferation. Using the blood vessel as a model, a biphasic culture system was then setup to represent a tunica intima (endothelial cells) and tunica media (smooth muscle cells). When suitable cell types were cultured in the corresponding compartments, confluent layers of the respective populations were achieved distinctively from each other. These results demonstrate the use of muXPCL films with cell-selective modifications for layered co-cultures towards the generation of stratified tissue.


Asunto(s)
Técnicas de Cocultivo/métodos , Células Madre/citología , Ingeniería de Tejidos/métodos , Cordón Umbilical/irrigación sanguínea , Cordón Umbilical/citología , Resinas Acrílicas/química , Antígenos CD34/metabolismo , Separación Celular , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Células Madre/metabolismo , Propiedades de Superficie , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA