Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Pharm ; 597: 120277, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33540024

RESUMEN

Spray drying was previously used to modify the physical form of the encapsulated ciprofloxacin drug to produce ciprofloxacin nanocrystals inside the liposomes (CNL). The purpose of the present study was to optimize CNL powder production by evaluating the response surface via design of experiments (DoE). Using the Box-Behnken (BB) design, the study independent variables were the protectant type (sucrose, trehalose or lactose), protectant amount, drying temperature, and spray gas flow. Individual spray drying experiments were performed at various set points for each variable followed by characterization of the produced powders. Liposomal particle size, drug encapsulation efficiency (EE%), liposomal surface zeta potential, and nanocrystal dimensions were the design dependant variables. By applying the least square regression method on the experimental data, mathematical models were developed using the mathematical software package MATLAB R2018b. Model reliability and the significance of the model's factors were estimated using analysis of variance (ANOVA). The generated CNL powders showed spherical to elliptical liposomal vesicles with particle sizes ranging from 98 to 159 nm. The EE (%) ranged from 30 to 95% w/w while the zeta potential varied between -3.5 and -10.5 mV. The encapsulated ciprofloxacin nanocrystals were elongated cylindrical structures with an aspect ratio of 4.0-7.8. Coefficients of determination (R2 > 0.9) revealed a good agreement between the predicted and experimental values for all responses except for the nanocrystal dimensions. Sucrose and lactose were superior to trehalose in protecting the liposomes during spray drying. The amount of sugar significantly affected the characteristics of the CNL powders (p-value < 0.05). In conclusion, the DoE approach using BB design has efficiently modelled the generation of CNL by spray drying. The optimum processing conditions which produced high drug encapsulation (90%) after formation of nanocrystals and a vesicle size of ~125 nm utilized 57% (w/w) sucrose, an 80 °C inlet temperature, and an atomization rate of 742 L/hr.


Asunto(s)
Ciprofloxacina , Nanopartículas , Liposomas , Tamaño de la Partícula , Polvos , Reproducibilidad de los Resultados , Proyectos de Investigación , Secado por Pulverización
2.
J Control Release ; 314: 102-115, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31629037

RESUMEN

Pulmonary delivery of messenger RNA (mRNA) has considerable potential as therapy or vaccine for a range of lung diseases. Inhaled dry powder formulation of mRNA is particularly attractive as it has superior stability and dry powder inhaler is relatively easy to use. A safe and effective mRNA delivery vector as well as a suitable particle engineering method are required to produce a dry powder formulation that is respirable and mediates robust transfection in the lung. Here, we introduce a novel RNA delivery vector, PEG12KL4, in which the synthetic cationic KL4 peptide is attached to a monodisperse linear PEG of 12-mers. The PEG12KL4 formed nano-sized complexes with mRNA at 10:1 ratio (w/w) and mediated effective transfection on human lung epithelial cells. PEG12KL4/mRNA complexes were successfully formulated into dry powder by spray drying (SD) and spray freeze drying (SFD) techniques. Both SD and SFD powder exhibited satisfactory aerosol properties for inhalation. More importantly, the biological activity of the PEG12KL4 /mRNA complexes were successfully preserved after drying. Using luciferase mRNA, the intratracheal administration of the liquid or powder aerosol of PEG12KL4 /mRNA complexes at a dose of 5µg mRNA resulted in luciferase expression in the deep lung region of mice 24h post-transfection. The transfection efficiency was superior to naked mRNA or lipoplexes (Lipofectamine 2000), in which luciferase expression was weaker and restricted to the tracheal region only. There was no sign of inflammatory response or toxicity of the PEG12KL4 /mRNA complexes after single intratracheal administration. Overall, PEG12KL4 is an excellent mRNA transfection agent for pulmonary delivery. This is also the first study that successfully demonstrates the preparation of inhalable dry powder mRNA formulations with in vivo transfection efficiency, showing the great promise of PEG12KL4 peptide as a mRNA delivery vector candidate for clinical applications.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Pulmón/metabolismo , Polietilenglicoles/química , ARN Mensajero/administración & dosificación , Células A549 , Administración por Inhalación , Aerosoles , Animales , Inhaladores de Polvo Seco , Células Epiteliales/metabolismo , Femenino , Liofilización , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Lípidos/química , Ratones , Ratones Endogámicos BALB C , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA