Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 11712, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810194

RESUMEN

An optimized mixture of polydopamine (PDA) and polyvinyl alcohol (PVA) is employed as the surface functionalizing agent and reducing agent to encapsulate individual polypropylene (PP) fibers of polypropylene micromembrane (PPMM). The functionalized PPMM becomes hydrophilic to allow the formation of Au nuclei for subsequent electroless Au deposition. The metalized PPMM is further deposited with IrO2 nanoparticles, and evaluated as a flexible and porous pH sensor. Images from scanning electron microscope confirms the uniform formation of IrO2 nanoparticles on Au-coated PP fibers. For pH-sensing performance, the IrO2-decorated metalized PPMM reveals a super-Nernstian response for a sensing slope of -74.45 mV/pH in aqueous solutions with pH value ranging between 2 and 12. In addition, the pH-sensing performance is properly maintained after 5000 bending cycles and hysteresis is modest in an acidic environment. The cell viability test indicates a negligible bio-toxicity. Our strategy of using a conductive polymeric membrane decorated with IrO2 nanoparticles enables possible sensing applications in wearable and implantable electronics.


Asunto(s)
Nanopartículas , Polipropilenos , Electrónica , Concentración de Iones de Hidrógeno , Polipropilenos/química , Alcohol Polivinílico/química
2.
Biomaterials ; 122: 141-153, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28119154

RESUMEN

Chronic brain stimulation has become a promising physical therapy with increased efficacy and efficiency in the treatment of neurodegenerative diseases. The application of deep brain electrical stimulation (DBS) combined with manganese-enhanced magnetic resonance imaging (MEMRI) provides an unbiased representation of the functional anatomy, which shows the communication between areas of the brain responding to the therapy. However, it is challenging for the current system to provide a real-time high-resolution image because the incorporated MnCl2 solution through microinjection usually results in image blurring or toxicity due to the uncontrollable diffusion of Mn2+. In this study, we developed a new type of conductive nanogel-based neural interface composed of amphiphilic chitosan-modified poly(3,4 -ethylenedioxythiophene) (PMSDT) that can exhibit biomimic structural/mechanical properties and ionic/electrical conductivity comparable to that of Au. More importantly, the PMSDT enables metal-ligand bonding with Mn2+ ions, so that the system can release Mn2+ ions rather than MnCl2 solution directly and precisely controlled by electrical stimulation (ES) to achieve real-time high-resolution MEMRI. With the integration of PMSDT nanogel-based coating in polyimide-based microelectrode arrays, the post-implantation DBS enables frequency-dependent MR imaging in vivo, as well as small focal imaging in response to channel site-specific stimulation on the implant. The MR imaging of the implanted brain treated with 5-min electrical stimulation showed a thalamocortical neuronal pathway after 36 h, confirming the effective activation of a downstream neuronal circuit following DBS. By eliminating the susceptibility to artifact and toxicity, this system, in combination with a MR-compatible implant and a bio-compliant neural interface, provides a harmless and synchronic functional anatomy for DBS. The study demonstrates a model of MEMRI-functionalized DBS based on functional neural interface engineering and controllable delivery technology, which can be utilized in more detailed exploration of the functional anatomy in the treatment of neurodegenerative diseases.


Asunto(s)
Estimulación Encefálica Profunda/instrumentación , Implantes de Medicamentos/administración & dosificación , Electrodos Implantados , Imagen por Resonancia Magnética Intervencional/métodos , Manganeso/administración & dosificación , Neuronas/fisiología , Polietilenglicoles/química , Polietileneimina/química , Animales , Línea Celular , Medios de Contraste/administración & dosificación , Estimulación Encefálica Profunda/métodos , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Imagen por Resonancia Magnética Intervencional/instrumentación , Análisis por Micromatrices/instrumentación , Microelectrodos , Nanogeles , Neuronas/citología , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Cirugía Asistida por Computador/métodos
3.
Adv Healthc Mater ; 5(23): 3016-3026, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27805786

RESUMEN

Delivery efficiency with gene transfection is a pivotal point in achieving maximized therapeutic efficacy and has been an important challenge with central nervous system (CNS) diseases. In this study, neurotensin (NT, a neuro-specific peptide)-conjugated polyethylenimine (PEI)-modified reduced graphene oxide (rGO) nanoparticles with precisely controlled two-stage near-infrared (NIR)-laser photothermal treatment to enhance the ability to target neurons and achieve high gene transfection in neurons. First-stage NIR laser irradiation on the cells with nanoparticles attached on the surface can increase the permeability of the cell membrane, resulting in an apparent increase in cellular uptake compared to untreated cells. In addition, second-stage NIR laser irradiation on the cells with nanoparticles inside can further induce endo/lysosomal cavitation, which not only helps nanoparticles escape from endo/lysosomes but also prevents plasmid DNA (pDNA) from being digested by DNase I. At least double pDNA amount can be released from rGO-PEI-NT/pDNA under NIR laser trigger release compared to natural release. Moreover, in vitro differentiated PC-12 cell and in vivo mice (C57BL/6) brain transfection experiments have demonstrated the highest transfection efficiency occurring when NT modification is combined with external multi-stage stimuli-responsive NIR laser treatment. The combination of neuro-specific targeting peptide and external NIR-laser-triggered aid provides a nanoplatform for gene therapy in CNS diseases.


Asunto(s)
Grafito/administración & dosificación , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/efectos de los fármacos , Neurotensina/administración & dosificación , Óxidos/administración & dosificación , Animales , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Grafito/química , Ratones , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Nanopartículas/química , Neurotensina/química , Óxidos/química , Plásmidos/metabolismo , Polietileneimina/química , Ratas , Espectroscopía Infrarroja Corta/métodos , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA