Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Anal Chem ; 93(13): 5365-5370, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33755419

RESUMEN

Tests for COVID-19 generally measure SARS-CoV-2 viral RNA from nasal swabs or antibodies against the virus from blood. It has been shown, however, that both viral particles and antibodies against those particles are present in saliva, which is more accessible than both swabs and blood. We present methods for highly sensitive measurements of both viral RNA and antibodies from the same saliva sample. We developed an efficient saliva RNA extraction method and combined it with an ultrasensitive antibody test based on single molecule array (Simoa) technology. We apply our test to the saliva of patients who presented to the hospital with COVID-19 symptoms, some of whom tested positive with a conventional RT-qPCR nasopharyngeal swab test. We demonstrate that combining viral RNA detection by RT-qPCR with antibody detection by Simoa identifies more patients as infected than either method alone. Our results demonstrate the utility of combining viral RNA and antibody testing from saliva, a single easily accessible biofluid.


Asunto(s)
Anticuerpos Antivirales/análisis , Prueba de COVID-19/métodos , COVID-19/diagnóstico , ARN Viral/análisis , SARS-CoV-2/genética , Saliva/inmunología , COVID-19/virología , Femenino , Humanos , Límite de Detección , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , SARS-CoV-2/inmunología
2.
Nucleic Acids Res ; 47(22): 11956-11962, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31713635

RESUMEN

There is increasing demand for single-stranded DNA (ssDNA) of lengths >200 nucleotides (nt) in synthetic biology, biological imaging and bionanotechnology. Existing methods to produce high-purity long ssDNA face limitations in scalability, complexity of protocol steps and/or yield. We present a rapid, high-yielding and user-friendly method for in vitro production of high-purity ssDNA with lengths up to at least seven kilobases. Polymerase chain reaction (PCR) with a forward primer bearing a methanol-responsive polymer generates a tagged amplicon that enables selective precipitation of the modified strand under denaturing conditions. We demonstrate that ssDNA is recoverable in ∼40-50 min (time after PCR) with >70% yield with respect to the input PCR amplicon, or up to 70 pmol per 100 µl PCR reaction. We demonstrate that the recovered ssDNA can be used for CRISPR/Cas9 homology directed repair in human cells, DNA-origami folding and fluorescent in-situ hybridization.


Asunto(s)
ADN de Cadena Simple/síntesis química , Reacción en Cadena de la Polimerasa/métodos , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Reparación del ADN/efectos de los fármacos , ADN de Cadena Simple/química , Marcación de Gen/métodos , Células HEK293 , Humanos , Metanol/química , Metanol/farmacología , Mutagénesis Sitio-Dirigida/métodos , Polímeros/química , Factores de Tiempo
3.
Proc Natl Acad Sci U S A ; 113(19): 5233-8, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27091962

RESUMEN

DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.


Asunto(s)
Conductometría/instrumentación , ADN/genética , Nanoporos/ultraestructura , Nucleótidos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Análisis de Secuencia de ADN/instrumentación , Secuencia de Bases , Sistemas de Computación , ADN/química , Diseño de Equipo , Análisis de Falla de Equipo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polímeros/química , Análisis de Secuencia de ADN/métodos , Coloración y Etiquetado/métodos
4.
Proc Natl Acad Sci U S A ; 113(44): E6749-E6756, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27729524

RESUMEN

Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin-polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform.


Asunto(s)
Electrodos , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanoporos , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Diseño de Equipo , Modelos Moleculares , Nucleótidos/análisis , Nucleótidos/química , Polímeros/química , Porinas/metabolismo
5.
Nat Methods ; 11(5): 499-507, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24781323

RESUMEN

For over 60 years, the synthetic production of new DNA sequences has helped researchers understand and engineer biology. Here we summarize methods and caveats for the de novo synthesis of DNA, with particular emphasis on recent technologies that allow for large-scale and low-cost production. In addition, we discuss emerging applications enabled by large-scale de novo DNA constructs, as well as the challenges and opportunities that lie ahead.


Asunto(s)
ADN/biosíntesis , Ingeniería Genética/métodos , Animales , Automatización , Biología Computacional/métodos , ADN/genética , Código de Barras del ADN Taxonómico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Biología Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Oligonucleótidos/genética , Polímeros/química , Ingeniería de Proteínas/métodos , Análisis de Secuencia de ADN
6.
Environ Microbiol ; 17(8): 2618-27, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24798076

RESUMEN

Recycling of plant biomass by a community of bacteria and fungi is fundamental to carbon flow in terrestrial ecosystems. Here we report how the plant fermenting, soil bacterium Clostridium phytofermentans enhances growth on cellulose by simultaneously lysing and consuming model fungi from soil. We investigate the mechanism of fungal lysis to show that among the dozens of different glycoside hydrolases C. phytofermentans secretes on cellulose, the most highly expressed enzymes degrade fungi rather than plant substrates. These enzymes, the GH18 Cphy1799 and Cphy1800, synergize to hydrolyse chitin, a main component of the fungal cell wall. Purified enzymes inhibit fungal growth and mutants lacking either GH18 grow normally on cellulose and other plant substrates, but have a reduced ability to hydrolyse chitinous substrates and fungal hyphae. Thus, C. phytofermentans boosts growth on cellulose by lysing fungi with its most highly expressed hydrolases, highlighting the importance of fungal interactions to the ecology of cellulolytic bacteria.


Asunto(s)
Celulosa/metabolismo , Quitina/metabolismo , Clostridium/enzimología , Clostridium/crecimiento & desarrollo , Hongos/metabolismo , Glicósido Hidrolasas/metabolismo , Microbiología del Suelo , Pared Celular/metabolismo , Ecosistema , Fermentación , Hidrólisis , Plantas/metabolismo , Suelo
7.
PLoS Genet ; 8(3): e1002558, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22396667

RESUMEN

The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system.


Asunto(s)
Ascomicetos , Biocombustibles , Celulosa , Hidrocarburos/metabolismo , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Celulosa/metabolismo , Endófitos/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Redes y Vías Metabólicas/genética , Metabolómica , ARN no Traducido/genética , Genética Inversa , Análisis de Secuencia de ARN , Transcriptoma/genética
8.
Mol Syst Biol ; 7: 461, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21245846

RESUMEN

Fermentation of plant biomass by microbes like Clostridium phytofermentans recycles carbon globally and can make biofuels from inedible feedstocks. We analyzed C. phytofermentans fermenting cellulosic substrates by integrating quantitative mass spectrometry of more than 2500 proteins with measurements of growth, enzyme activities, fermentation products, and electron microscopy. Absolute protein concentrations were estimated using Absolute Protein EXpression (APEX); relative changes between treatments were quantified with chemical stable isotope labeling by reductive dimethylation (ReDi). We identified the different combinations of carbohydratases used to degrade cellulose and hemicellulose, many of which were secreted based on quantification of supernatant proteins, as well as the repertoires of glycolytic enzymes and alcohol dehydrogenases (ADHs) enabling ethanol production at near maximal yields. Growth on cellulose also resulted in diverse changes such as increased expression of tryptophan synthesis proteins and repression of proteins for fatty acid metabolism and cell motility. This study gives a systems-level understanding of how this microbe ferments biomass and provides a rational, empirical basis to identify engineering targets for industrial cellulosic fermentation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosa/metabolismo , Clostridium/metabolismo , Proteoma/metabolismo , Biología de Sistemas/métodos , Proteínas Bacterianas/análisis , Biocombustibles , Biomasa , Carbono/metabolismo , Adhesión Celular , Clostridium/citología , Clostridium/enzimología , Clostridium/fisiología , Glucosa/metabolismo , Modelos Lineales , Espectrometría de Masas , Redes y Vías Metabólicas , Microscopía Electrónica de Rastreo , Polisacáridos/metabolismo , Proteoma/análisis
9.
Mol Microbiol ; 74(6): 1300-13, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19775243

RESUMEN

Summary Microbial cellulose degradation is a central part of the global carbon cycle and has great potential for the development of inexpensive, carbon-neutral biofuels from non-food crops. Clostridium phytofermentans has a repertoire of 108 putative glycoside hydrolases to break down cellulose and hemicellulose into sugars, which this organism then ferments primarily to ethanol. An understanding of cellulose degradation at the molecular level requires learning the different roles of these hydrolases. In this study, we show that interspecific conjugation with Escherichia coli can be used to transfer a plasmid into C. phytofermentans that has a resistance marker, an origin of replication that can be selectively lost, and a designed group II intron for efficient, targeted chromosomal insertions without selection. We applied these methods to disrupt the cphy3367 gene, which encodes the sole family 9 glycoside hydrolase (GH9) in the C. phytofermentans genome. The GH9-deficient strain grew normally on some carbon sources such as glucose, but had lost the ability to degrade cellulose. Although C. phytofermentans upregulates the expression of numerous enzymes to break down cellulose, this process thus relies upon a single, key hydrolase, Cphy3367.


Asunto(s)
Celulasa/metabolismo , Celulosa/metabolismo , Clostridium/enzimología , Silenciador del Gen , Marcación de Gen , Celulasa/genética , Clostridium/genética , Conjugación Genética , Escherichia coli/genética , Intrones , Modelos Biológicos , Modelos Químicos , Mutagénesis Insercional/métodos , Filogenia , Homología de Secuencia de Aminoácido
10.
Nucleic Acids Res ; 31(15): e84, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12888536

RESUMEN

We describe a strategy to analyze the impact of single nucleotide mutations on protein function. Our method utilizes a combination of yeast functional complementation, growth competition of mutant pools and polyacrylamide gel immobilized PCR. A system was constructed in which the yeast PGK1 gene was expressed from a plasmid-borne copy of the gene in a PGK1 deletion strain of Saccharomyces cerevisiae. Using this system, we demonstrated that the enrichment or depletion of PGK1 point mutants from a mixed culture was consistent with the expected results based on the isolated growth rates of the mutants. Enrichment or depletion of individual point mutants was shown to result from increases or decreases, respectively, in the specific activities of the encoded proteins. Further, we demonstrate the ability to analyze the functional effect of many individual point mutations in parallel. By functional complementation of yeast deletions with human homologs, our technique could be readily applied to the functional analysis of single nucleotide polymorphisms in human genes of medical interest.


Asunto(s)
Mutación Puntual , Saccharomyces cerevisiae/genética , Biopolímeros/análisis , Simulación por Computador , ADN/análisis , Análisis Mutacional de ADN/métodos , Electroforesis en Gel de Poliacrilamida , Perfilación de la Expresión Génica , Genes Fúngicos , Prueba de Complementación Genética , Modelos Biológicos , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/fisiología , Plásmidos , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Transformación Genética
11.
Virulence ; 1(4): 299-303, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21178459

RESUMEN

The increasing levels of multi-drug resistance in human pathogenic bacteria are compromising our ability to treat infectious disease. Since antibiotic resistance determinants are readily exchanged between bacteria through lateral gene transfer, there is an increasing interest in investigating reservoirs of antibiotic resistance accessible to pathogens. Due to the high likelihood of contact and genetic exchange with pathogens during disease progression, the human microflora warrants special attention as perhaps the most accessible reservoir of resistance genes. Indeed, numerous previous studies have demonstrated substantial antibiotic resistance in cultured isolates from the human microflora. By applying metagenomic functional selections, we recently demonstrated that the functional repertoire of resistance genes in the human microbiome is much more diverse than suggested using previous culture-dependent methods. We showed that many resistance genes from cultured proteobacteria from human fecal samples are identical to resistance genes harbored by human pathogens, providing strong support for recent genetic exchange of this resistance machinery. In contrast, most of the resistance genes we identified with culture independent metagenomic sampling from the same samples were novel when compared to all known genes in public databases. While this clearly demonstrates that the antibiotic resistance reservoir of the large fraction of the human microbiome recalcitrant to culturing is severely under sampled, it may also suggest that barriers exist to lateral gene transfer between these bacteria and readily cultured human pathogens. If we hope to turn the tide against multidrug resistant infections, we must urgently commit to quantitatively characterizing the resistance reservoirs encoded by our diverse human microbiomes, with a particular focus on routes of exchange of these reservoirs with other microbial communities.


Asunto(s)
Farmacorresistencia Microbiana/genética , Genes Bacterianos , Metagenoma/genética , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Heces/microbiología , Humanos , Metagenómica , Reacción en Cadena de la Polimerasa , Saliva/microbiología
12.
Science ; 325(5944): 1128-1131, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19713526

RESUMEN

To understand the process by which antibiotic resistance genes are acquired by human pathogens, we functionally characterized the resistance reservoir in the microbial flora of healthy individuals. Most of the resistance genes we identified using culture-independent sampling have not been previously identified and are evolutionarily distant from known resistance genes. By contrast, nearly half of the resistance genes we identified in cultured aerobic gut isolates (a small subset of the gut microbiome) are identical to resistance genes harbored by major pathogens. The immense diversity of resistance genes in the human microbiome could contribute to future emergence of antibiotic resistance in human pathogens.


Asunto(s)
Bacterias Aerobias/genética , Bacterias/genética , Sistema Digestivo/microbiología , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Metagenoma , Antibacterianos/farmacología , Antiportadores/genética , Antiportadores/metabolismo , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias Aerobias/clasificación , Bacterias Aerobias/efectos de los fármacos , Bacterias Aerobias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Heces/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Filogenia , Proteobacteria/clasificación , Proteobacteria/efectos de los fármacos , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Saliva/microbiología , Transposasas/genética , Transposasas/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
13.
Genome Res ; 17(1): 1-6, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17151344

RESUMEN

Advances in the in vitro synthesis and evolution of DNA, RNA, and polypeptides are accelerating the construction of biopolymers, pathways, and organisms with novel functions. Known functions are being integrated and debugged with the aim of synthesizing life-like systems. The goals are knowledge, tools, smart materials, and therapies.


Asunto(s)
Biología Molecular/tendencias , Biopolímeros/biosíntesis , ADN/biosíntesis , Ingeniería Genética , Biología Molecular/métodos , Ingeniería de Proteínas , ARN/biosíntesis
14.
Science ; 309(5741): 1728-32, 2005 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-16081699

RESUMEN

We describe a DNA sequencing technology in which a commonly available, inexpensive epifluorescence microscope is converted to rapid nonelectrophoretic DNA sequencing automation. We apply this technology to resequence an evolved strain of Escherichia coli at less than one error per million consensus bases. A cell-free, mate-paired library provided single DNA molecules that were amplified in parallel to 1-micrometer beads by emulsion polymerase chain reaction. Millions of beads were immobilized in a polyacrylamide gel and subjected to automated cycles of sequencing by ligation and four-color imaging. Cost per base was roughly one-ninth as much as that of conventional sequencing. Our protocols were implemented with off-the-shelf instrumentation and reagents.


Asunto(s)
ADN Bacteriano/genética , Escherichia coli/genética , Evolución Molecular , Genoma Bacteriano , Análisis de Secuencia de ADN/métodos , Resinas Acrílicas , Algoritmos , Automatización , Costos y Análisis de Costo , ADN Ligasas/metabolismo , Cartilla de ADN , Colorantes Fluorescentes , Geles , Biblioteca de Genes , Microscopía Fluorescente , Microesferas , Mutación , Hibridación de Ácido Nucleico , Mutación Puntual , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN/economía , Análisis de Secuencia de ADN/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA