Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proteins ; 90(7): 1457-1467, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35194841

RESUMEN

Clostridium thermocellum is actively being developed as a microbial platform to produce biofuels and chemicals from renewable plant biomass. An attractive feature of this bacterium is its ability to efficiently degrade lignocellulose using surface-displayed cellulosomes, large multi-protein complexes that house different types of cellulase enzymes. Clostridium thermocellum tailors the enzyme composition of its cellulosome using nine membrane-embedded anti-σ factors (RsgI1-9), which are thought to sense different types of extracellular carbohydrates and then elicit distinct gene expression programs via cytoplasmic σ factors. Here we show that the RsgI9 anti-σ factor interacts with cellulose via a C-terminal bi-domain unit. A 2.0 Å crystal structure reveals that the unit is constructed from S1C peptidase and NTF2-like protein domains that contain a potential binding site for cellulose. Small-angle X-ray scattering experiments of the intact ectodomain indicate that it adopts a bi-lobed, elongated conformation. In the structure, a conserved RsgI extracellular (CRE) domain is connected to the bi-domain via a proline-rich linker, which is expected to project the carbohydrate-binding unit ~160 Å from the cell surface. The CRE and proline-rich elements are conserved in several other C. thermocellum anti-σ factors, suggesting that they will also form extended structures that sense carbohydrates.


Asunto(s)
Celulosomas , Clostridium thermocellum , Proteínas Bacterianas/química , Biomasa , Celulosa/metabolismo , Celulosomas/química , Clostridium thermocellum/metabolismo , Prolina/metabolismo , Factor sigma/química
2.
J Biol Chem ; 293(18): 6942-6957, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29540481

RESUMEN

Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It actively acquires the essential nutrient iron from human hemoglobin (Hb) using the iron-regulated surface-determinant (Isd) system. This process is initiated when the closely related bacterial IsdB and IsdH receptors bind to Hb and extract its hemin through a conserved tri-domain unit that contains two NEAr iron Transporter (NEAT) domains that are connected by a helical linker domain. Previously, we demonstrated that the tri-domain unit within IsdH (IsdHN2N3) triggers hemin release by distorting Hb's F-helix. Here, we report that IsdHN2N3 promotes hemin release from both the α- and ß-subunits. Using a receptor mutant that only binds to the α-subunit of Hb and a stopped-flow transfer assay, we determined the energetics and micro-rate constants of hemin extraction from tetrameric Hb. We found that at 37 °C, the receptor accelerates hemin release from Hb up to 13,400-fold, with an activation enthalpy of 19.5 ± 1.1 kcal/mol. We propose that hemin removal requires the rate-limiting hydrolytic cleavage of the axial HisF8 Nϵ-Fe3+ bond, which, based on molecular dynamics simulations, may be facilitated by receptor-induced bond hydration. Isothermal titration calorimetry experiments revealed that two distinct IsdHN2N3·Hb protein·protein interfaces promote hemin release. A high-affinity receptor·Hb(A-helix) interface contributed ∼95% of the total binding standard free energy, enabling much weaker receptor interactions with Hb's F-helix that distort its hemin pocket and cause unfavorable changes in the binding enthalpy. We present a model indicating that receptor-introduced structural distortions and increased solvation underlie the IsdH-mediated hemin extraction mechanism.


Asunto(s)
Metabolismo Energético , Hemina/aislamiento & purificación , Hemoglobinas/química , Staphylococcus aureus/metabolismo , Antígenos Bacterianos/metabolismo , Sitios de Unión , Biopolímeros/química , Biopolímeros/metabolismo , Calorimetría , Proteínas de Transporte de Catión/metabolismo , Hemina/metabolismo , Hemoglobinas/metabolismo , Humanos , Hidrólisis , Cinética , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Receptores de Superficie Celular/metabolismo , Termodinámica
3.
Appl Environ Microbiol ; 77(14): 4849-58, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21622797

RESUMEN

To cost-efficiently produce biofuels, new methods are needed to convert lignocellulosic biomass into fermentable sugars. One promising approach is to degrade biomass using cellulosomes, which are surface-displayed multicellulase-containing complexes present in cellulolytic Clostridium and Ruminococcus species. In this study we created cellulolytic strains of Bacillus subtilis that display one or more cellulase enzymes. Proteins containing the appropriate cell wall sorting signal are covalently anchored to the peptidoglycan by coexpressing them with the Bacillus anthracis sortase A (SrtA) transpeptidase. This approach was used to covalently attach the Cel8A endoglucanase from Clostridium thermocellum to the cell wall. In addition, a Cel8A-dockerin fusion protein was anchored on the surface of B. subtilis via noncovalent interactions with a cell wall-attached cohesin module. We also demonstrate that it is possible to assemble multienzyme complexes on the cell surface. A three-enzyme-containing minicellulosome was displayed on the cell surface; it consisted of a cell wall-attached scaffoldin protein noncovalently bound to three cellulase-dockerin fusion proteins that were produced in Escherichia coli. B. subtilis has a robust genetic system and is currently used in a wide range of industrial processes. Thus, grafting larger, more elaborate minicellulosomes onto the surface of B. subtilis may yield cellulolytic bacteria with increased potency that can be used to degrade biomass.


Asunto(s)
Bacillus subtilis/metabolismo , Pared Celular/metabolismo , Celulosomas/metabolismo , Lignina/metabolismo , Proteínas de la Membrana/metabolismo , Aminoaciltransferasas/biosíntesis , Aminoaciltransferasas/genética , Bacillus subtilis/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Bioingeniería , Proteínas de Ciclo Celular , Celulasa/metabolismo , Proteínas Cromosómicas no Histona , Clostridium thermocellum/enzimología , Cisteína Endopeptidasas/biosíntesis , Cisteína Endopeptidasas/genética , Escherichia coli/metabolismo , Immunoblotting , Proteínas de la Membrana/genética , Microscopía Fluorescente , Complejos Multienzimáticos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cohesinas
4.
ACS Synth Biol ; 9(2): 381-391, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31922719

RESUMEN

The functions of enzymes can be strongly affected by their higher-order spatial arrangements. In this study we combine multiple new technologies-designer protein cages and sortase-based enzymatic attachments between proteins-as a novel platform for organizing multiple enzymes (of one or more types) in specified configurations. As a scaffold we employ a previously characterized 24-subunit designed protein cage whose termini are outwardly exposed for attachment. As a first-use case, we test the attachment of two cellulase enzymes known to act synergistically in cellulose degradation. We show that, after endowing the termini of the cage subunits with a short "sort-tag" sequence (LPXTG) and the opposing termini of the cellulase enzymes with a short polyglycine sequence tag, addition of sortase covalently attaches the enzymes to the cage with good reactivity and high copy number. The doubly modified cages show enhanced activity in a cellulose degradation assay compared to enzymes in solution, and compared to a combination of singly modified cages. These new engineering strategies could be broadly useful in the development of enzymatic material and synthetic biology applications.


Asunto(s)
Celulasa/metabolismo , Nanocápsulas/química , Ingeniería de Proteínas , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Celulasa/genética , Celulosa/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Péptidos/química , Péptidos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato
5.
Bioengineered ; 5(2): 96-106, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24430239

RESUMEN

Renewable lignocellulosic plant biomass is a promising feedstock from which to produce biofuels, chemicals, and materials. One approach to cost-effectively exploit this resource is to use consolidating bioprocessing (CBP) microbes that directly convert lignocellulose into valuable end products. Because many promising CBP-enabling microbes are non-cellulolytic, recent work has sought to engineer them to display multi-cellulase containing minicellulosomes that hydrolyze biomass more efficiently than isolated enzymes. In this review, we discuss progress in engineering the surfaces of the model microorganisms: Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. We compare the distinct approaches used to display cellulases and minicellulosomes, as well as their surface enzyme densities and cellulolytic activities. Thus far, minicellulosomes have only been grafted onto the surfaces of B. subtilis and S. cerevisiae, suggesting that the absence of an outer membrane in fungi and Gram-positive bacteria may make their surfaces better suited for displaying the elaborate multi-enzyme complexes needed to efficiently degrade lignocellulose.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biocombustibles/microbiología , Membrana Celular/fisiología , Celulasas/fisiología , Celulosomas/metabolismo , Mejoramiento Genético/métodos , Lignina/metabolismo , Bioingeniería/métodos , Conservación de los Recursos Naturales , Ingeniería de Proteínas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA