Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 23(21)2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362030

RESUMEN

Much evidence suggests autoimmunity in the etiopathogenesis of periodontal disease. In fact, in periodontitis, there is antibody production against collagen, DNA, and IgG, as well as increased IgA expression, T cell dysfunction, high expression of class II MHC molecules on the surface of gingival epithelial cells in inflamed tissues, activation of NK cells, and the generation of antibodies against the azurophil granules of polymorphonuclear leukocytes. In general, direct activation of autoreactive immune cells and production of TNF can activate neutrophils to release pro-inflammatory enzymes with tissue damage in the gingiva. Gingival inflammation and, in the most serious cases, periodontitis, are mainly due to the dysbiosis of the commensal oral microbiota that triggers the immune system. This inflammatory pathological state can affect the periodontal ligament, bone, and the entire gingival tissue. Oral tolerance can be abrogated by some cytokines produced by epithelial cells and activated immune cells, including mast cells (MCs). Periodontal cells and inflammatory-immune cells, including mast cells (MCs), produce cytokines and chemokines, mediating local inflammation of the gingival, along with destruction of the periodontal ligament and alveolar bone. Immune-cell activation and recruitment can be induced by inflammatory cytokines, such as IL-1, TNF, IL-33, and bacterial products, including lipopolysaccharide (LPS). IL-1 and IL-33 are pleiotropic cytokines from members of the IL-1 family, which mediate inflammation of MCs and contribute to many key features of periodontitis and other inflammatory disorders. IL-33 activates several immune cells, including lymphocytes, Th2 cells, and MCs in both innate and acquired immunological diseases. The classic therapies for periodontitis include non-surgical periodontal treatment, surgery, antibiotics, anti-inflammatory drugs, and surgery, which have been only partially effective. Recently, a natural cytokine, IL-37, a member of the IL-1 family and a suppressor of IL-1b, has received considerable attention for the treatment of inflammatory diseases. In this article, we report that IL-37 may be an important and effective therapeutic cytokine that may inhibit periodontal inflammation. The purpose of this paper is to study the relationship between MCs, IL-1, IL-33, and IL-37 inhibition in acute and chronic inflamed gingival tissue.


Asunto(s)
Gingivitis , Interleucina-33 , Mastocitos , Humanos , Citocinas , Gingivitis/metabolismo , Gingivitis/patología , Inflamación , Interleucina-33/metabolismo , Mastocitos/metabolismo , Mastocitos/patología , Periodontitis/metabolismo , Periodontitis/patología , Interleucina-1/metabolismo
2.
Med Hypotheses ; 144: 109876, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32562915

RESUMEN

The new zoonotic coronavirus (SARS-CoV-2) responsible for coronavirus disease (COVID-19) is a new strain of coronavirus not previously seen in humans and which appears to come from bat species. It originated in Wuhan, Hubei Province, China, and spread rapidly throughout the world, causing over 5,569,679 global cases and 351,866 deaths in almost every country in the world, including Europe, particularly Italy. In general, based on existing data published to date, 80.9% of patients infected with the virus develop mild infection; 13.8% severe pneumonia; 4.7% respiratory failure, septic shock or multi-organ failure; 3% of these cases are fatal. Critical patients have been shown to develop acute respiratory distress syndrome (ARDS) and hospitalization in intensive care units. The average age of patients admitted to hospital is 57-79 years, with one third half with an underlying disease. Asymptomatic infections have also been described, but their frequency is not known. SARS-CoV-2 transmission is mainly airborne from one person to another via droplets. The data available so far seem to indicate that SARS-CoV-2 is capable of producing an excessive immune reaction in the host. The virus attacks type II pneumocytes in the lower bronchi through the binding of the Spike protein (S protein) to viral receptors, of which the angiotensin 2 conversion enzyme (ACE2) receptor is the most important. ACE2 receptor is widely expressed in numerous tissues, including the oropharynx and conjunctiva, but mostly distributed in ciliated bronchial epithelial cells and type II pneumocytes in the lower bronchi. The arrival of SARS-CoV-2 in the lungs causes severe primary interstitial viral pneumonia that can lead to the "cytokine storm syndrome", a deadly uncontrolled systemic inflammatory response triggered by the activation of interleukin 6 (IL-6), whose effect is extensive lung tissue damage and disseminated intravascular coagulation (DIC), that are life-threatening for patients with COVID-19. In the absence of a therapy of proven efficacy, current management consists of off-label or compassionate use therapies based on antivirals, antiparasitic agents in both oral and parenteral formulation, anti-inflammatory drugs, oxygen therapy and heparin support and convalescent plasma. Like most respiratory viruses can function and replicate at low temperatures (i.e. 34-35 °C) and assuming viral thermolability of SARS-CoV-2, local instillation or aerosol of antiviral (i.e. remdesivir) in humid heat vaporization (40°-41 °C) in the first phase of infection (phenotype I, before admission), both in asymptomatic but nasopharyngeal swab positive patients, together with antiseptic-antiviral oral gargles and povidone-iodine eye drops for conjunctiva (0,8-5% conjunctival congestion), would attack the virus directly through the receptors to which it binds, significantly decreasing viral replication, risk of evolution to phenotypes IV and V, reducing hospitalization and therefore death.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Aerosoles , Alanina/análogos & derivados , Antivirales/administración & dosificación , Tratamiento Farmacológico de COVID-19 , Pulmón/efectos de los fármacos , Adenosina Monofosfato/administración & dosificación , Alanina/administración & dosificación , Animales , Humanos , Inflamación , Modelos Teóricos , Fenotipo , Povidona Yodada/administración & dosificación , SARS-CoV-2
3.
J Tissue Eng Regen Med ; 13(7): 1109-1121, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30942960

RESUMEN

Spinal cord injury (SCI) is a neurological disorder that arises from a primary acute mechanical lesion, followed by a pathophysiological cascade of events that leads to further spinal cord tissue damage. Several preclinical and clinical studies have highlighted the ability of stem cell therapy to improve long-term functional recovery in SCI. Previously, we demonstrated that moringin (MOR) treatment accelerates the differentiation process in mesenchymal stem cells inducing an early up-regulation of neural development associated genes. In the present study, we investigated the anti-inflammatory, anti-apoptotic, and regenerative effects of gingival mesenchymal stem cells (GMSCs) pretreated with nanostructured liposomes enriched with MOR in an animal model of SCI. SCI was produced by extradural compression of the spinal cord at levels T6-T7 in ICR (CD-1) mice. Animals were randomly assigned to the following groups: Sham, SCI, SCI + GMSCs (1 × 106  cell/i.v.), SCI + MOR-GMSCs (1 × 106  cell/i.v.). Our data show that MOR-treated GMSCs exert anti-inflammatory and anti-apoptotic activities. In particular, MOR-treated GMSCs are able to reduce the spinal cord levels of COX-2, GFAP, and inflammatory cytokines IL-1ß and IL-6 and to restore spinal cord normal morphology. Also, MOR-treated GMSCs influenced the apoptotic pathway, by reducing Bax, caspase 3, and caspase 9 expressions.


Asunto(s)
Encía , Isotiocianatos/farmacología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Nanoestructuras , Traumatismos de la Médula Espinal , Adulto , Animales , Modelos Animales de Enfermedad , Femenino , Encía/metabolismo , Encía/patología , Xenoinjertos , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos ICR , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia
4.
Clin Invest Med ; 31(2): E55-61, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18377761

RESUMEN

INTRODUCTION: Microarray is a recently developed simultaneous analysis of expression patterns of thousand of genes. The aim of this research was to evaluate the expression profile of human healthy dental pulp in order to find the presence of genes activated and encoding for proteins involved in the physiological process of human dental pulp. We report data obtained by analyzing expression profiles of human tooth pulp from single subjects, using an approach based on the amplification of the total RNA. METHODS: Experiments were performed on a high-density array able to analyse about 21,000 oligonucleotide sequences of about 70 bases in duplicate, using an approach based on the amplification of the total RNA from the pulp of a single tooth. Obtained data were analyzed using the S.A.M. system (Significance Analysis of Microarray) and genes were merged according to their molecular functions and biological process by the Onto-Express software. RESULTS: The microarray analysis revealed 362 genes with specific pulp expression. Genes showing significant high expression were classified in genes involved in tooth development, protoncogenes, genes of collagen, DNAse, Metallopeptidases and Growth factors. CONCLUSION: We report a microarray analysis, carried out by extraction of total RNA from specimens of healthy human dental pulp tissue. This approach represents a powerful tool in the study of human normal and pathological pulp, allowing minimization of the genetic variability due to the pooling of samples from different individuals.


Asunto(s)
Pulpa Dental/metabolismo , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Adolescente , Alelos , Bases de Datos Genéticas , Variación Genética , Humanos , Análisis por Micromatrices , Modelos Biológicos , ARN/metabolismo , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA