Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pract Radiat Oncol ; 14(1): e75-e85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37797883

RESUMEN

PURPOSE: Our purpose was to identify variations in the clinical use of automatically generated contours that could be attributed to software error, off-label use, or automation bias. METHODS AND MATERIALS: For 500 head and neck patients who were contoured by an in-house automated contouring system, Dice similarity coefficient and added path length were calculated between the contours generated by the automated system and the final contours after editing for clinical use. Statistical process control was used and control charts were generated with control limits at 3 standard deviations. Contours that exceeded the thresholds were investigated to determine the cause. Moving mean control plots were then generated to identify dosimetrists who were editing less over time, which could be indicative of automation bias. RESULTS: Major contouring edits were flagged for: 1.0% brain, 3.1% brain stem, 3.5% left cochlea, 2.9% right cochlea, 4.8% esophagus, 4.1% left eye, 4.0% right eye, 2.2% left lens, 4.9% right lens, 2.5% mandible, 11% left optic nerve, 6.1% right optic nerve, 3.8% left parotid, 5.9% right parotid, and 3.0% of spinal cord contours. Identified causes of editing included unexpected patient positioning, deviation from standard clinical practice, and disagreement between dosimetrist preference and automated contouring style. A statistically significant (P < .05) difference was identified between the contour editing practice of dosimetrists, with 1 dosimetrist editing more across all organs at risk. Eighteen percent (27/150) of moving mean control plots created for 5 dosimetrists indicated the amount of contour editing was decreasing over time, possibly corresponding to automation bias. CONCLUSIONS: The developed system was used to detect statistically significant edits caused by software error, unexpected clinical use, and automation bias. The increased ability to detect systematic errors that occur when editing automatically generated contours will improve the safety of the automatic treatment planning workflow.


Asunto(s)
Cuello , Programas Informáticos , Humanos , Esófago , Glándula Parótida , Planificación de la Radioterapia Asistida por Computador , Órganos en Riesgo
2.
Comput Med Imaging Graph ; 108: 102286, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37625307

RESUMEN

Deformable image registration (DIR) between daily and reference images is fundamentally important for adaptive radiotherapy. In the last decade, deep learning-based image registration methods have been developed with faster computation time and improved robustness compared to traditional methods. However, the registration performance is often degraded in extra-cranial sites with large volume containing multiple anatomic regions, such as Computed Tomography (CT)/Magnetic Resonance (MR) images used in head and neck (HN) radiotherapy. In this study, we developed a hierarchical deformable image registration (DIR) framework, Patch-based Registration Network (Patch-RegNet), to improve the accuracy and speed of CT-MR and MR-MR registration for head-and-neck MR-Linac treatments. Patch-RegNet includes three steps: a whole volume global registration, a patch-based local registration, and a patch-based deformable registration. Following a whole-volume rigid registration, the input images were divided into overlapping patches. Then a patch-based rigid registration was applied to achieve accurate local alignment for subsequent DIR. We developed a ViT-Morph model, a combination of a convolutional neural network (CNN) and the Vision Transformer (ViT), for the patch-based DIR. A modality independent neighborhood descriptor was adopted in our model as the similarity metric to account for both inter-modality and intra-modality registration. The CT-MR and MR-MR DIR models were trained with 242 CT-MR and 213 MR-MR image pairs from 36 patients, respectively, and both tested with 24 image pairs (CT-MR and MR-MR) from 6 other patients. The registration performance was evaluated with 7 manually contoured organs (brainstem, spinal cord, mandible, left/right parotids, left/right submandibular glands) by comparing with the traditional registration methods in Monaco treatment planning system and the popular deep learning-based DIR framework, Voxelmorph. Evaluation results show that our method outperformed VoxelMorph by 6 % for CT-MR registration, and 4 % for MR-MR registration based on DSC measurements. Our hierarchical registration framework has been demonstrated achieving significantly improved DIR accuracy of both CT-MR and MR-MR registration for head-and-neck MR-guided adaptive radiotherapy.


Asunto(s)
Tronco Encefálico , Imagen Multimodal , Humanos , Redes Neurales de la Computación
3.
Comput Med Imaging Graph ; 90: 101907, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33845433

RESUMEN

PURPOSE: We conducted our study to develop a tool capable of automatically detecting dental artifacts in a CT scan on a slice-by-slice basis and to assess the dosimetric impact of implementing the tool into the Radiation Planning Assistant (RPA), a web-based platform designed to fully automate the radiation therapy treatment planning process. METHODS: We developed an automatic dental artifact identification tool and assessed the dosimetric impact of its use in the RPA. Three users manually annotated 83,676 head-and-neck (HN) CT slices (549 patients). Majority-voting was applied to the individual annotations to determine the presence or absence of dental artifacts. The patients were divided into train, cross-validation, and test data sets (ratio: 3:1:1, respectively). A random subset of images without dental artifacts was used to balance classes (1:1) in the training data set. The Inception-V3 deep learning model was trained with the binary cross-entropy loss function. With use of this model, we automatically identified artifacts on 15 RPA HN plans on a slice-by-slice basis and investigated three dental artifact management methods applied before and after volumetric modulated arc therapy (VMAT) plan optimization. The resulting dose distributions and target coverage were quantified. RESULTS: Per-slice accuracy, sensitivity, and specificity were 99 %, 91 %, and 99 %, respectively. The model identified all patients with artifacts. Small dosimetric differences in total plan dose were observed between the various density-override methods (±1 Gy). For the pre- and post-optimized plans, 90 % and 99 %, respectively, of dose comparisons resulted in normal structure dose differences of ±1 Gy. Differences in the volume of structures receiving 95 % of the prescribed dose (V95[%]) were ≤0.25 % for 100 % of plans. CONCLUSION: The dosimetric impact of applying dental artifact management before and after artifact plan optimization was minor. Our results suggest that not accounting for dental artifacts in the current RPA workflow (where only post-optimization dental artifact management is possible) may result in minor dosimetric differences. If RPA users choose to override CT densities as a solution to managing dental artifacts, our results suggest segmenting the volume of the artifact and overriding its density to water is a safe option.


Asunto(s)
Artefactos , Radioterapia de Intensidad Modulada , Humanos , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Flujo de Trabajo
4.
Front Artif Intell ; 4: 618469, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898983

RESUMEN

Osteoradionecrosis (ORN) is a major side-effect of radiation therapy in oropharyngeal cancer (OPC) patients. In this study, we demonstrate that early prediction of ORN is possible by analyzing the temporal evolution of mandibular subvolumes receiving radiation. For our analysis, we use computed tomography (CT) scans from 21 OPC patients treated with Intensity Modulated Radiation Therapy (IMRT) with subsequent radiographically-proven ≥ grade II ORN, at three different time points: pre-IMRT, 2-months, and 6-months post-IMRT. For each patient, radiomic features were extracted from a mandibular subvolume that developed ORN and a control subvolume that received the same dose but did not develop ORN. We used a Multivariate Functional Principal Component Analysis (MFPCA) approach to characterize the temporal trajectories of these features. The proposed MFPCA model performs the best at classifying ORN vs. Control subvolumes with an area under curve (AUC) = 0.74 [95% confidence interval (C.I.): 0.61-0.90], significantly outperforming existing approaches such as a pre-IMRT features model or a delta model based on changes at intermediate time points, i.e., at 2- and 6-month follow-up. This suggests that temporal trajectories of radiomics features derived from sequential pre- and post-RT CT scans can provide markers that are correlates of RT-induced mandibular injury, and consequently aid in earlier management of ORN.

5.
J Appl Clin Med Phys ; 10(1): 80-89, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19223833

RESUMEN

Dental restorations, fixed prosthodontics, and implants affect dose distribution in head and neck radiation therapy due to the high atomic number of the materials utilized. The backscatter of electrons from metallic materials due to the impinging treatment x-ray results in localized dose enhancements. These dose enhancements cause localized mucositis in patients who have dental work, a significant clinical complication. We investigated the backscatter effect of 23 configurations of dental work using the EGS4nrc Monte Carlo (MC) simulation system. We found that all-metal fixed partial dentures caused the highest amount of dose enhancement--up to 33%--while amalgam restorations did not cause a significant amount. Restorations with a ceramic veneer caused up to 8% enhancement. Between 3 mm and 5 mm of water-equivalent material almost completely absorbed the backscatter. MC simulations provide an accurate estimate of backscatter dose, and may provide patient-specific estimates in future.


Asunto(s)
Restauración Dental Permanente , Neoplasias de Cabeza y Cuello/radioterapia , Método de Montecarlo , Amalgama Dental/efectos de la radiación , Materiales Dentales/efectos de la radiación , Humanos , Prótesis e Implantes , Dosificación Radioterapéutica
6.
Med Phys ; 46(11): 5086-5097, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31505046

RESUMEN

PURPOSE: To develop a head and neck normal structures autocontouring tool that could be used to automatically detect the errors in autocontours from a clinically validated autocontouring tool. METHODS: An autocontouring tool based on convolutional neural networks (CNN) was developed for 16 normal structures of the head and neck and tested to identify the contour errors from a clinically validated multiatlas-based autocontouring system (MACS). The computed tomography (CT) scans and clinical contours from 3495 patients were semiautomatically curated and used to train and validate the CNN-based autocontouring tool. The final accuracy of the tool was evaluated by calculating the Sørensen-Dice similarity coefficients (DSC) and Hausdorff distances between the automatically generated contours and physician-drawn contours on 174 internal and 24 external CT scans. Lastly, the CNN-based tool was evaluated on 60 patients' CT scans to investigate the possibility to detect contouring failures. The contouring failures on these patients were classified as either minor or major errors. The criteria to detect contouring errors were determined by analyzing the DSC between the CNN- and MACS-based contours under two independent scenarios: (a) contours with minor errors are clinically acceptable and (b) contours with minor errors are clinically unacceptable. RESULTS: The average DSC and Hausdorff distance of our CNN-based tool was 98.4%/1.23 cm for brain, 89.1%/0.42 cm for eyes, 86.8%/1.28 cm for mandible, 86.4%/0.88 cm for brainstem, 83.4%/0.71 cm for spinal cord, 82.7%/1.37 cm for parotids, 80.7%/1.08 cm for esophagus, 71.7%/0.39 cm for lenses, 68.6%/0.72 for optic nerves, 66.4%/0.46 cm for cochleas, and 40.7%/0.96 cm for optic chiasm. With the error detection tool, the proportions of the clinically unacceptable MACS contours that were correctly detected were 0.99/0.80 on average except for the optic chiasm, when contours with minor errors are clinically acceptable/unacceptable, respectively. The proportions of the clinically acceptable MACS contours that were correctly detected were 0.81/0.60 on average except for the optic chiasm, when contours with minor errors are clinically acceptable/unacceptable, respectively. CONCLUSION: Our CNN-based autocontouring tool performed well on both the publically available and the internal datasets. Furthermore, our results show that CNN-based algorithms are able to identify ill-defined contours from a clinically validated and used multiatlas-based autocontouring tool. Therefore, our CNN-based tool can effectively perform automatic verification of MACS contours.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X , Automatización , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia
7.
Comput Med Imaging Graph ; 69: 134-139, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30268005

RESUMEN

Radiomics studies have demonstrated the potential use of quantitative image features to improve prognostic stratification of patients with head and neck cancer. Imaging protocol parameters that can affect radiomics feature values have been investigated, but the effects of artifacts caused by intrinsic patient factors have not. Two such artifacts that are common in patients with head and neck cancer are streak artifacts caused by dental fillings and beam-hardening artifacts caused by bone. The purpose of this study was to test the impact of these artifacts and if needed, methods for compensating for these artifacts in head and neck radiomics studies. The robustness of feature values was tested by removing slices of the gross tumor volume (GTV) on computed tomography images from 30 patients with head and neck cancer; these images did not have streak artifacts or had artifacts far from the GTV. The range of each feature value over a percentage of the GTV was compared to the inter-patient variability at full volume. To determine the effects of beam-hardening artifacts, we scanned a phantom with 5 cartridges of different materials encased in polystyrene buildup. A cylindrical hole through the cartridges contained either a rod of polylactic acid to simulate water or a rod of polyvinyl chloride to simulate bone. A region of interest was drawn in each cartridge flush with the rod. Most features were robust with up to 50% of the original GTV removed. Most feature values did not significantly differ when measured with the polylactic acid rod or the polyvinyl chloride rod. Of those that did, the size of the difference did not exceed the inter-patient standard deviation in most cases. We conclude that simply removing slices affected by streak artifacts can enable these scans to be included in radiomics studies and that contours of structures can abut bone without being affected by beam hardening if needed.


Asunto(s)
Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Tomografía Computarizada por Rayos X , Adulto , Anciano , Algoritmos , Artefactos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen
8.
J Glob Oncol ; 4: 1-11, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30110221

RESUMEN

Purpose We assessed automated contouring of normal structures for patients with head-and-neck cancer (HNC) using a multiatlas deformable-image-registration algorithm to better provide a fully automated radiation treatment planning solution for low- and middle-income countries, provide quantitative analysis, and determine acceptability worldwide. Methods Autocontours of eight normal structures (brain, brainstem, cochleae, eyes, lungs, mandible, parotid glands, and spinal cord) from 128 patients with HNC were retrospectively scored by a dedicated HNC radiation oncologist. Contours from a 10-patient subset were evaluated by five additional radiation oncologists from international partner institutions, and interphysician variability was assessed. Quantitative agreement of autocontours with independently physician-drawn structures was assessed using the Dice similarity coefficient and mean surface and Hausdorff distances. Automated contouring was then implemented clinically and has been used for 166 patients, and contours were quantitatively compared with the physician-edited autocontours using the same metrics. Results Retrospectively, 87% of normal structure contours were rated as acceptable for use in dose-volume-histogram-based planning without edit. Upon clinical implementation, 50% of contours were not edited for use in treatment planning. The mean (± standard deviation) Dice similarity coefficient of autocontours compared with physician-edited autocontours for parotid glands (0.92 ± 0.10), brainstem (0.95 ± 0.09), and spinal cord (0.92 ± 0.12) indicate that only minor edits were performed. The average mean surface and Hausdorff distances for all structures were less than 0.15 mm and 1.8 mm, respectively. Conclusion Automated contouring of normal structures generates reliable contours that require only minimal editing, as judged by retrospective ratings from multiple international centers and clinical integration. Autocontours are acceptable for treatment planning with no or, at most, minor edits, suggesting that automated contouring is feasible for clinical use and in the ongoing development of automated radiation treatment planning algorithms.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Cabeza/anatomía & histología , Cuello/anatomía & histología , Pobreza/tendencias , Anciano , Femenino , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Órganos en Riesgo , Estudios Retrospectivos
9.
Int J Radiat Oncol Biol Phys ; 59(4): 960-70, 2004 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15234029

RESUMEN

PURPOSE: Many patients receiving fractionated radiotherapy (RT) for head-and-neck cancer have marked anatomic changes during their course of treatment, including shrinking of the primary tumor or nodal masses, resolving postoperative changes/edema, and changes in overall body habitus/weight loss. We conducted a pilot study to quantify the magnitude of these anatomic changes with systematic CT imaging. METHODS AND MATERIALS: Fourteen assessable patients were enrolled in this pilot study. Eligible patients had to have a pathologic diagnosis of head-and-neck cancer, be treated with definitive external beam RT, and had have gross primary and/or cervical nodal disease measuring at least 4 cm in maximal diameter. All patients were treated using a new commercial integrated CT-linear accelerator system (EXaCT) that allows CT imaging at the daily RT sessions while the patient remains immobilized in the treatment position. CT scans were acquired three times weekly during the entire course of RT, and both gross tumor volumes (GTVs: primary tumor and involved lymph nodes) and normal tissues (parotid glands, spinal canal, mandible, and external contour) were manually contoured on every axial slice. Volumetric and positional changes relative to a central bony reference (the center of mass of the C2 vertebral body) were determined for each structure. RESULTS: Gross tumor volumes decreased throughout the course of fractionated RT, at a median rate of 0.2 cm(3) per treatment day (range, 0.01-1.95 cm(3)/d). In terms of the percentage of the initial volume, the GTVs decreased at a median rate of 1.8%/treatment day (range, 0.2-3.1%/d). On the last day of treatment, this corresponded to a median total relative loss of 69.5% of the initial GTV (range, 9.9-91.9%). In addition, the center of the mass of shrinking tumors changed position with time, indicating that GTV loss was frequently asymmetric. At treatment completion, the median center of the mass displacement (after corrections for daily setup variation) was 3.3 mm (range, 0-17.3 mm). Parotid glands also decreased in volume (median, 0.19 cm(3)/d range, 0.04-0.84 cm(3)/d), and generally shifted medially (median, 3.1 mm; range, 0-9.9 mm) with time. This medial displacement of the parotid glands correlated highly with the weight loss that occurred during treatment. CONCLUSION: Measurable anatomic changes occurred throughout fractionated external beam RT for head-and-neck cancers. These changes in the external contour, shape, and location of the target and critical structures appeared to be significant during the second half of treatment (after 3-4 weeks of treatment) and could have potential dosimetric impact when highly conformal treatment techniques are used. These data may, therefore, be useful in the development of an adaptive RT scheme (periodic adjustment of the conformal treatment plan) that takes into account such treatment-related anatomic changes. In theory, such a strategy would maximize the therapeutic ratio of RT.


Asunto(s)
Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/radioterapia , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/radioterapia , Adulto , Anciano , Carcinoma de Células Escamosas/tratamiento farmacológico , Fraccionamiento de la Dosis de Radiación , Femenino , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Ganglios Linfáticos/patología , Ganglios Linfáticos/efectos de la radiación , Masculino , Persona de Mediana Edad , Glándula Parótida/patología , Glándula Parótida/efectos de la radiación , Aceleradores de Partículas , Proyectos Piloto , Tomografía Computarizada por Rayos X , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA