Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 628(8009): 910-918, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570680

RESUMEN

OSCA/TMEM63 channels are the largest known family of mechanosensitive channels1-3, playing critical roles in plant4-7 and mammalian8,9 mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.


Asunto(s)
Canales de Calcio , Microscopía por Crioelectrón , Activación del Canal Iónico , Mecanotransducción Celular , Humanos , Anoctaminas/química , Anoctaminas/metabolismo , Canales de Calcio/química , Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Lípidos/química , Liposomas/metabolismo , Liposomas/química , Modelos Moleculares , Nanoestructuras/química
2.
Nature ; 590(7846): 509-514, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33568813

RESUMEN

Mechanosensitive channels sense mechanical forces in cell membranes and underlie many biological sensing processes1-3. However, how exactly they sense mechanical force remains under investigation4. The bacterial mechanosensitive channel of small conductance, MscS, is one of the most extensively studied mechanosensitive channels4-8, but how it is regulated by membrane tension remains unclear, even though the structures are known for its open and closed states9-11. Here we used cryo-electron microscopy to determine the structure of MscS in different membrane environments, including one that mimics a membrane under tension. We present the structures of MscS in the subconducting and desensitized states, and demonstrate that the conformation of MscS in a lipid bilayer in the open state is dynamic. Several associated lipids have distinct roles in MscS mechanosensation. Pore lipids are necessary to prevent ion conduction in the closed state. Gatekeeper lipids stabilize the closed conformation and dissociate with membrane tension, allowing the channel to open. Pocket lipids in a solvent-exposed pocket between subunits are pulled out under sustained tension, allowing the channel to transition to the subconducting state and then to the desensitized state. Our results provide a mechanistic underpinning and expand on the 'force-from-lipids' model for MscS mechanosensation4,11.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/química , Canales Iónicos/metabolismo , Canales Iónicos/ultraestructura , Membranas Artificiales , Fosfatidilcolinas/metabolismo , Detergentes/farmacología , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Canales Iónicos/química , Canales Iónicos/genética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Modelos Moleculares , Mutación , Nanoestructuras/química , Nanoestructuras/ultraestructura , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacología , Conformación Proteica/efectos de los fármacos , beta-Ciclodextrinas/farmacología
3.
Proc Natl Acad Sci U S A ; 111(38): 13864-9, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25201991

RESUMEN

The lipid bilayer plays a crucial role in gating of mechanosensitive (MS) channels. Hence it is imperative to elucidate the rheological properties of lipid membranes. Herein we introduce a framework to characterize the mechanical properties of lipid bilayers by combining micropipette aspiration (MA) with theoretical modeling. Our results reveal that excised liposome patch fluorometry is superior to traditional cell-attached MA for measuring the intrinsic mechanical properties of lipid bilayers. The computational results also indicate that unlike the uniform bilayer tension estimated by Laplace's law, bilayer tension is not uniform across the membrane patch area. Instead, the highest tension is seen at the apex of the patch and the lowest tension is encountered near the pipette wall. More importantly, there is only a negligible difference between the stress profiles of the outer and inner monolayers in the cell-attached configuration, whereas a substantial difference (∼30%) is observed in the excised configuration. Our results have far-reaching consequences for the biophysical studies of MS channels and ion channels in general, using the patch-clamp technique, and begin to unravel the difference in activity seen between MS channels in different experimental paradigms.


Asunto(s)
Membrana Dobles de Lípidos/química , Membranas Artificiales , Modelos Químicos , Reología/métodos
4.
FASEB J ; 29(10): 4334-45, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26116700

RESUMEN

The bacterial mechanosensitive channel of small conductance (MscS) plays a crucial role in the protection of bacterial cells against hypo-osmotic shock. The functional characteristics of MscS have been extensively studied using liposomal reconstitution. This is a widely used experimental paradigm and is particularly important for mechanosensitive channels as channel activity can be probed free from cytoskeletal influence. A perpetual issue encountered using this paradigm is unknown channel orientation. Here we examine the orientation of MscS in liposomes formed using 2 ion channel reconstitution methods employing the powerful combination of patch clamp electrophysiology, confocal microscopy, and continuum mechanics simulation. Using the previously determined electrophysiological and pharmacological properties of MscS, we were able to determine that in liposomes, independent of lipid composition, MscS adopts the same orientation seen in native membranes. These results strongly support the idea that these specific methods result in uniform incorporation of membrane ion channels and caution against making assumptions about mechanosensitive channel orientation using the stimulus type alone.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Activación del Canal Iónico/fisiología , Canales Iónicos/fisiología , Mecanotransducción Celular/fisiología , Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/química , Canales Iónicos/metabolismo , Cinética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/química , Liposomas/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Microscopía Confocal , Técnicas de Placa-Clamp , Esferoplastos/efectos de los fármacos , Esferoplastos/metabolismo , Esferoplastos/fisiología , Factores de Tiempo , Trifluoroetanol/farmacología
5.
Biochim Biophys Acta Biomembr ; 1862(5): 183203, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31981589

RESUMEN

Mechanosensitive (MS) channels have an intimate relationship with membrane lipids that underlie their mechanosensitivity. Membrane lipids may influence channel activity by directly interacting with MS channels or by influencing the global properties of the membrane such as elastic area expansion modulus or bending rigidity. Previous work has implicated membrane stiffness as a potential determinant of the mechanosensitivity of E. coli (Ec)MscS. Here we systematically tested this hypothesis using patch fluorometry of azolectin liposomes doped with lipids of increasing elastic area expansion modulus. Increasing dioleoylphosphatidylethanolamine (DOPE) content of azolectin liposomes made it more difficult to activate EcMscS by membrane tension (i.e. increased gating threshold). This effect was exacerbated by stiffer forms of phosphatidylethanolamine such as the branched chain lipid diphytanoylphosphoethanolamine (DPhPE) or the fully saturated lipid distearoyl-sn-glycero-3-phosphoethanolamine (DSPE). Furthermore, a comparison of the branched chain lipid diphytanoylphosphocholine (DPhPC) to the stiffer DPhPE indicated again that it was harder to activate EcMscS in the presence of the stiffer DPhPE. We show that these effects are not due to changes in membrane bending rigidity as the membrane tension threshold of EcMscS in membranes doped with PC18:1 and PC18:3 remained the same, despite a two-fold difference in their bending rigidity. We also show that after prolonged pressure application sudden removal of force in softer membranes caused a rebound reactivation of EcMscS and we discuss the relevance of this phenomenon to bacterial osmoregulation. Collectively, our data suggests that membrane stiffness (elastic area expansion modulus) is one of the key determinants of the mechanosensitivity of EcMscS.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/química , Mecanotransducción Celular/fisiología , Transporte Biológico , Fenómenos Biomecánicos/fisiología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Activación del Canal Iónico/fisiología , Canales Iónicos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Lípidos de la Membrana/metabolismo , Membranas/metabolismo , Técnicas de Placa-Clamp/métodos , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas , Esferoplastos/metabolismo
6.
Nat Commun ; 7: 11984, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27329693

RESUMEN

The bacterial mechanosensitive channel MscL gates in response to membrane tension as a result of mechanical force transmitted directly to the channel from the lipid bilayer. MscL represents an excellent model system to study the basic biophysical principles of mechanosensory transduction. However, understanding of the essential structural components that transduce bilayer tension into channel gating remains incomplete. Here using multiple experimental and computational approaches, we demonstrate that the amphipathic N-terminal helix of MscL acts as a crucial structural element during tension-induced gating, both stabilizing the closed state and coupling the channel to the membrane. We propose that this may also represent a common principle in the gating cycle of unrelated mechanosensitive ion channels, allowing the coupling of channel conformation to membrane dynamics.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Membrana Celular/metabolismo , Biología Computacional , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/metabolismo , Eliminación de Gen , Activación del Canal Iónico , Membrana Dobles de Lípidos/química , Liposomas/química , Conformación Molecular , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Dominios Proteicos , Termodinámica
7.
Channels (Austin) ; 8(4): 321-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24758942

RESUMEN

Mechanosensitive (MS) ion channels are molecular sensors that detect and transduce signals across prokaryotic and eukaryotic cell membranes arising from external mechanical stimuli or osmotic gradients. They play an integral role in mechanosensory responses including touch, hearing, and proprioception by opening or closing in order to facilitate or prevent the flow of ions and organic osmolytes. In this study we use a linear force model of MS channel gating to determine the gating membrane tension (γ) and the gating area change (ΔA) associated with the energetics of MscS channel gating in giant spheroplasts and azolectin liposomes. Analysis of Boltzmann distribution functions describing the dependence of MscS channel gating on membrane tension indicated that the gating area change (ΔA) was the same for MscS channels recorded in both preparations. The comparison of the membrane tension (γ) gating the channel, however, showed a significant difference between the MscS channel activities in these two preparations.


Asunto(s)
Metabolismo Energético , Proteínas de Escherichia coli/metabolismo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Liposomas/química , Fosfatidilcolinas/farmacología , Esferoplastos/química , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Canales Iónicos/química , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Esferoplastos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA