Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Scanning ; 2020: 5936789, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193944

RESUMEN

The application prospect of biodegradable materials is being studied extensively. However, the high corrosion rate and its alloys in body fluids have been major limitations of the application of pure Mg (magnesium). To improve corrosion resistance of biodegradable AZ31 Mg alloy, we adopted microarc fluorination within a voltage range of 100-300 V in 46% hydrofluoric acid. To obtain morphologies, chemical compositions, and structural characteristics, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were performed, respectively. Results showed that the coating was mainly composed of MgF2. Electrochemical corrosion and immersion tests proved that the corrosion resistance of MAF-treated AZ31 Mg alloy was significantly improved compared with untreated AZ31 Mg alloy in HBSS (Hank's Balanced Salt Solution). Current densities of AZ31, MAF100, MAF150, MAF200, MAF250, and MAF300 were 342.4, 0.295, 0.228, 0.177, 0.199, and 0.212 µA/cm2, respectively. The roughness test indicated that samples under MAF treatment of 200 V, 250 V, and 300 V had large surface roughness. Meanwhile, the contact angle measurement and surface free energy test suggested that those samples had smaller contact angle and higher SFE than Ti. Thus, MAF-treated AZ31 Mg alloy might have promising application in various fields.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles Revestidos/química , Magnesio/química , Líquidos Corporales/química , Corrosión , Microscopía Electrónica de Rastreo/métodos , Espectrometría por Rayos X/métodos , Propiedades de Superficie , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA