Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nano Lett ; 22(23): 9424-9433, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36378880

RESUMEN

The intraoperative imaging applications of a large number of Raman probes are hampered by the overlap of their signals with the background Raman signals generated by biological tissues. Here, we describe a molecular planarization strategy for adjusting the Raman shift of these Raman probes to avoid interference. Using this strategy, we modify the backbone of thiophene polymer-poly(3-hexylthiophene) (P3HT), and obtain the adjacent thiophene units planarized polycyclopenta[2,1-b;3,4-b']dithiophene (PCPDT). Compared with P3HT whose signal is disturbed by the Raman signal of lipids in tissues, PCPDT exhibits a 60 cm-1 blueshift in its characteristic signal. Therefore, the PCPDT probe successfully avoids the signal of lipids, and achieves intraoperative imaging of lymph nodes and tumor micrometastasis as small as 0.30 × 0.36 mm. In summary, our study presents a concise molecular planarization strategy for regulating the signal shift of Raman probes, and brings a tunable thiophene polymer probe for high-precision intraoperative Raman imaging.


Asunto(s)
Micrometástasis de Neoplasia , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/cirugía , Polímeros/química , Tiofenos , Lípidos
2.
Small ; 18(12): e2106925, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35092156

RESUMEN

Raman imaging is a powerful tool for the diagnosis of cancers and visualization of various biological processes. Polymers possessing excellent biocompatibility are promising probes for Raman imaging. However, few polymers are reported to serve as Raman probes for in vivo imaging, mainly due to the intrinsic weak Raman signal intensity and fluorescence interference of these polymers. Herein, a poly(indacenodithiophene-benzothiadiazole) (IDT-BT) polymer is presented, which emits unprecedentedly strong Raman signals under the near-infrared wavelength (785 nm) excitation, thus functioning as a Raman probe for ultrasensitive in vivo Raman imaging. Further mechanistic studies unveil that the unique Raman feature of the IDT-BT polymer relies on molecularly regulating its absorbance edge adjacent to the desired excitation wavelength, thus avoiding fluorescence interference and simultaneously emitting strong Raman scattering under preresonant excitation. Taking advantage of this discipline, the IDT-BT polymeric probe successfully realizes intraoperative Raman imaging of micrometastasis as small as 0.3 mm × 0.3 mm, comparable to the most sensitive Raman probes currently reported. Impressively, the IDT-BT enables noninvasive microvascular imaging, which is not achieved using other Raman probes. This work opens a new avenue toward the development of polymeric Raman probes for in vivo Raman imaging.


Asunto(s)
Diagnóstico por Imagen , Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Polímeros , Espectrometría Raman/métodos
3.
Acta Pharmacol Sin ; 38(6): 943-953, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28552909

RESUMEN

Owing to the presence of multidrug resistance in tumor cells, conventional chemotherapy remains clinically intractable. To enhance the therapeutic efficacy of chemotherapeutic agents, targeting strategies based on magnetic polymeric nanoparticles modified with targeting ligands have gained significant attention in cancer therapy. In this study, we synthesized transferrin (Tf)-modified poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) loaded with paclitaxel (PTX) and superparamagnetic nanoparticle (MNP) using a solid-in-oil-in-water solvent evaporation method, followed by Tf adsorption on the surface of NPs. The Tf-modified magnetic PLGA NPs were characterized in terms of particle morphology and size, magnetic properties, encapsulation efficiency and drug release. Furthermore, the cytotoxicity and cellular uptake of the drug-loaded magnetic PLGA NPs were evaluated in both MCF-7 breast cancer and U-87 glioma cells in vitro. We found that Tf-modified PTX-MNP-PLGA NPs showed the highest cytotoxicity effect and cellular uptake efficiency under Tf receptor mediation in both MCF-7 and U-87 cells compared to unmodified PLGA NPs and free PTX. The cellular uptake efficiency of Tf-modified magnetic PLGA NPs appeared to be facilitated by the applied magnetic field, but the difference did not reach statistical significance. This study illustrates that this proposed formulation can be used as one new alternative treatment for patients bearing inaccessible tumors.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Sistemas de Liberación de Medicamentos , Ácido Láctico/farmacología , Nanopartículas de Magnetita/química , Paclitaxel/farmacología , Ácido Poliglicólico/farmacología , Transferrina/química , Adsorción , Anciano , Antineoplásicos Fitogénicos/química , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Ácido Láctico/química , Campos Magnéticos , Paclitaxel/química , Tamaño de la Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Propiedades de Superficie , Células Tumorales Cultivadas
4.
Adv Sci (Weinh) ; 10(36): e2303033, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37964406

RESUMEN

Myocardial infarction (MI) is a major cause of mortality worldwide. The major limitation of regenerative therapy for MI is poor cardiac retention of therapeutics, which results from an inefficient vascular network and poor targeting ability. In this study, a two-layer intrinsically magnetic epicardial patch (MagPatch) prepared by 3D printing with biocompatible materials like poly (glycerol sebacate) (PGS) is designed, poly (ε-caprolactone) (PCL), and NdFeB. The two-layer structure ensured that the MagPatch multifariously utilized the magnetic force for rapid vascular reconstruction and targeted drug delivery. MagPatch accumulates superparamagnetic iron oxide (SPION)-labelled endothelial cells, instantly forming a ready-implanted organization, and rapidly reconstructs a vascular network anastomosed with the host. In addition, the prefabricated vascular network within the MagPatch allowed for the efficient accumulation of SPION-labelled therapeutics, amplifying the therapeutic effects of cardiac repair. This study defined an extendable therapeutic platform for vascularization-based targeted drug delivery that is expected to assist in the progress of regenerative therapies in clinical applications.


Asunto(s)
Infarto del Miocardio , Poliésteres , Humanos , Poliésteres/química , Células Endoteliales , Materiales Biocompatibles/química , Fenómenos Magnéticos
5.
ACS Appl Mater Interfaces ; 11(41): 38190-38204, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31550131

RESUMEN

Despite broad application of nanotechnology in neuroscience, the nanoneurotoxicity of magnetic nanoparticles in primary hippocampal neurons remains poorly characterized. In particular, understanding how magnetic nanoparticles perturb neuronal calcium homeostasis is critical when considering magnetic nanoparticles as a nonviral vector for effective gene therapy in neuronal diseases. Here, we address the pressing need to systematically investigate the neurotoxicity of magnetic nanoparticles with different surface charges in primary hippocampal neurons. We found that unlike negative and neutral nanoparticles, positively charged magnetic nanoparticles (magnetic poly(lactic-co-glycolic acid) (PLGA)-polyethylenimine (PEI) nanoparticles, MNP-PLGA-PEI NPs) rapidly elevated cytoplasmic calcium levels in primary hippocampal neurons, mainly via extracellular calcium influx regulated by voltage-gated calcium channels. We went on to show that this perturbation of intracellular calcium homeostasis elicited serious cytotoxicity in primary hippocampal neurons. However, our next experiment demonstrated that PEGylation on the surface of MNP-PLGA-PEI NPs shielded the surface charge, thereby preventing the perturbation of intracellular calcium homeostasis. That is, PEGylated MNP-PLGA-PEI NPs reduced nanoneurotoxicity. Importantly, biocompatible PEGylated MNP-PLGA-PEI NPs under an external magnetic field enhanced transfection efficiency (>7%) of plasmid DNA encoding GFP in primary hippocampal neurons compared to NPs without external magnetic field mediation. Moreover, under an external magnetic field, this system achieved gene transfection in the hippocampus of the C57 mouse. Overall, this study is the first to successfully employ biocompatible PEGylated MNP-PLGA-PEI NPs for transfection using a magnetofection strategy in primary hippocampal neurons, thereby providing a nanoplatform as a new perspective for treating neuronal diseases or modulating neuron activities.


Asunto(s)
Proteínas Fluorescentes Verdes , Hipocampo/metabolismo , Nanopartículas/química , Neuronas/metabolismo , Plásmidos , Transfección , Animales , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Hipocampo/citología , Humanos , Ratones , Neuronas/citología , Plásmidos/química , Plásmidos/genética , Plásmidos/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Polietileneimina/química , Polietileneimina/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Ratas , Ratas Sprague-Dawley
6.
ACS Appl Mater Interfaces ; 8(47): 32159-32169, 2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-27808492

RESUMEN

Chemotherapy is one of the most important strategies for glioma treatment. However, the "impermeability" of the blood-brain barrier (BBB) impedes most chemotherapeutics from entering the brain, thereby rendering very few drugs suitable for glioma therapy, letting alone application of a combination of chemotherapeutics. Thereby, there is a pressing need to overcome the obstacles. A dual-targeting strategy was developed by a combination of magnetic guidance and transferrin receptor-binding peptide T7-mediated active targeting delivery. The T7-modified magnetic PLGA nanoparticle (NP) system was prepared with co-encapsulation of the hydrophobic magnetic nanoparticles and a combination of drugs (i.e., paclitaxel and curcumin) based on a "one-pot" process. The combined drugs yielded synergistic effects on inhibition of tumor growth via the mechanisms of apoptosis induction and cell cycle arrest, displaying significantly increased efficacy relative to the single use of each drug. Dual-targeting effects yielded a >10-fold increase in cellular uptake studies and a >5-fold enhancement in brain delivery compared to the nontargeting NPs. For the in vivo studies with an orthotopic glioma model, efficient brain accumulation was observed by using fluorescence imaging, synchrotron radiation X-ray imaging, and MRI. Furthermore, the antiglioma treatment efficacy of the delivery system was evaluated. With application of a magnetic field, this system exhibited enhanced treatment efficiency and reduced adverse effects. All mice bearing orthotopic glioma survived, compared to a 62.5% survival rate for the combination group receiving free drugs. This dual-targeting, co-delivery strategy provides a potential method for improving brain drug delivery and antiglioma treatment efficacy.


Asunto(s)
Nanopartículas , Animales , Neoplasias Encefálicas , Línea Celular Tumoral , Curcumina , Sistemas de Liberación de Medicamentos , Glioma , Ácido Láctico , Ratones , Ratones Endogámicos BALB C , Paclitaxel , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
7.
Biomaterials ; 34(30): 7483-94, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23820014

RESUMEN

Malignant brain tumors are characterized by three major physiological processes: proliferation, angiogenesis, and invasion. Traditional cytotoxic chemotherapies (e.g. Paclitaxel) control the tumor by blocking growth and proliferation mechanisms, but leave angiogenesis and invasion unchecked. We identified Matrix metalloproteinase-2 (MMP-2), an essential proteinase regulating brain tumor invasion and angiogenesis, as one of the therapeutic target. A designer RNAi plasmid was developed, and complexed with the gene carrier polyethylenimine (PEI), in an effort to specifically suppress MMP-2 expression in tumor cells. The gene and a cytotoxic drug Paclitaxel were then dual-encapsulated in PLGA based submicron implants to achieve a sustained release of both agents. Potent inhibition effects on MMP-2 mRNA and protein expression, in vitro cell angiogenesis and invasion were demonstrated both on the PEI/DNA nanoparticles alone, and on the PEI/DNA nanoparticles embedded in microfibers. Most importantly, through in vivo test on intracranial xenograft tumor model in BALB/c nude mice, it was proved that the gene/drug dual delivery microfibers are able to impose significant tumor regression compared with single drug delivery microfibers and commercial drug treatment, showing evidence for synergistic therapeutic efficacy.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Interferencia de ARN , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Línea Celular Tumoral , ADN/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Implantes Experimentales , Mediciones Luminiscentes , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Desnudos , Nanopartículas/química , Nanopartículas/ultraestructura , Neovascularización Patológica/patología , Plásmidos/metabolismo , Polietileneimina/química , Interferencia de ARN/efectos de los fármacos
8.
ACS Appl Mater Interfaces ; 4(6): 3177-83, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22646097

RESUMEN

Hybrid mesoporous silica nanoparticles (MSNs), which were synthesized using the co-condensation method and engineered with unique redox-responsive gatekeepers, were developed for studying the glutathione-mediated controlled release. These hybrid nanoparticles constitute a mesoporous silica core that can accommodate the guests (i.e., drug, dye) and the PEG shell that can be connected with the core via disulfide-linker. Interestingly, the PEG shell can be selectively detached from the inner core at tumor-relevant glutathione (GSH) levels and facilitate the release of the encapsulated guests at a controlled manner. The structure of the resulting hybrid nanoparticles (MSNs-SS-mPEG) was comprehensively characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and nitrogen adsorption/desorption isotherms analysis. The disulfide-linked PEG chains anchored on MSNs could serve as efficient gatekeepers to control the on-off of the pores. Compared with no GSH, fluorescein dye as the model drug loaded into MSNs showed rapid release in 10 mM GSH, indicating the accelerated release after the opening of the pores regulated by GSH. Confocal microscopy images showed a clear evidence of the dye-loaded MSNs-SS-mPEG nanoparticles endocytosis into MCF-7 cells and releasing guest molecules from the pore inside cells. Moreover, in vitro cell viability test using MTT assay indicated that MSNs-SS-mPEG nanoparticles had no obvious cytotoxicity. These results indicate that MSNs-SS-mPEG nanoparticles can be used in the biomedical field.


Asunto(s)
Disulfuros/química , Glutatión/química , Nanopartículas/química , Polietilenglicoles/química , Dióxido de Silicio/química , Proliferación Celular/efectos de los fármacos , Portadores de Fármacos/química , Portadores de Fármacos/toxicidad , Humanos , Células MCF-7 , Nanopartículas/toxicidad , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA