Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Macromol Rapid Commun ; 44(3): e2200693, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36250510

RESUMEN

Multiple and two-way reversible shape memory polymers (M/2W-SMPs) are highly promising for many fields due to large deformation, lightweight, strong recovery stress, and fast response rates. Herein, a semi-crystalline block poly(urethane-urea-amide) elastomers (PUUAs) are prepared by the copolymerization of isocyanate-terminated polyurethane (OPU) and amino-terminated oligomeric polyamide-1212 (OPA). PUUAs, composed of OPA as stationary phase and PTMEG as reversible phase, exhibit excellent rigidity, flexibility, and resilience, and cPUUA-C7 -S25 exhibits the best tensile property with strength of 10.3 MPa and elongation at break of 360.2%. Besides, all the PUUAs possess two crystallization/melting temperatures and a glass transition temperature, which endow PUUAs with multiple and reversible two-way shape memory effect (M/2W-SME). Physically crosslinked PUUA-C0 -S25 exhibits excellent dual and triple shape memory, and micro chemically crosslinked cPUUA-C7 -S25 further shows quadruple shape memory behavior. Additionally, both PUUA-C0 -S25 and cPUUA-C7 -S25 have 2W-SME. Intriguingly, cPUUA-C7 -S25 can achieve a higher temperature (up to 165 °C) SME, which makes it suitable for more complex and changeable applications. Based on the advantages of M/2W-SME, a temperature-responsive application scenario where PUUAs can transform spontaneously among different shapes is designed. These unique M/2W-SME and high-temperature SME will enable the applications of high-temperature sensors, actuators, and aerospace equipment.


Asunto(s)
Elastómeros , Polímeros , Polímeros/química , Amidas , Urea , Poliuretanos/química
2.
Soft Matter ; 12(10): 2766-72, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26860288

RESUMEN

The solution-processing fabrication of superhydrophobic surfaces is currently intriguing, owing to high-efficiency, low cost, and energy-consuming. Here, a facile nonsolvent-assisted process was proposed for the fabrication of the multi-scaled surface roughness in polylactide (PLA) films, thereby resulting in a significant transformation in the surface wettability from intrinsic hydrophilicity to superhydrophobicity. Moreover, it was found that the surface topographical structure of PLA films can be manipulated by varying the compositions of the PLA solutions. And the samples showed superhydrophobic surfaces as well as high melting enthalpy and crystallinity. In particular, a high contact angle of 155.8° together with a high adhesive force of 184 µN was yielded with the assistance of a multi-nonsolvent system, which contributed to the co-existence of micro-/nano-scale hierarchical structures.


Asunto(s)
Nanoestructuras/química , Poliésteres/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanoestructuras/ultraestructura , Propiedades de Superficie , Agua/química , Humectabilidad
3.
Colloids Surf B Biointerfaces ; 238: 113881, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608460

RESUMEN

Hydrogels as wound dressing have attracted extensive attention in past decade because they can provide moist microenvironment to promote wound healing. Herein, this research designed a multifunctional hydrogel with antibacterial property and antioxidant activity fabricated from quaternary ammonium bearing light emitting quaternized TPE-P(DAA-co-DMAPMA) (QTPDD) and poly(aspartic hydrazide) (PAH). The protocatechuic aldehyde (PCA) grafted to the hydrogel through dynamic bond endowed the hydrogel with antioxidant activity and the tranexamic acid (TXA) was loaded to enhance the hemostatic performance. The hydrogel possesses preferable gelation time for injectable application, good antioxidant property and tissue adhesion, improved hemostatic performance fit for wound repairing. Furthermore, the hydrogel has excellent antimicrobial property to both E. coli and S. aureus based on quaternary ammonium structure. The hydrogel also showed good biocompatibility and the in vivo experiments proved this hydrogel can promote the wound repairing rate. This study suggests that TXA/hydrogel with quaternary ammonium structure and dynamic grafted PCA have great potential in wound healing applications.


Asunto(s)
Antibacterianos , Antioxidantes , Escherichia coli , Hidrogeles , Staphylococcus aureus , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Hidrogeles/química , Hidrogeles/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Animales , Hemostáticos/química , Hemostáticos/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Polímeros/química , Polímeros/farmacología , Acrilamidas/química , Acrilamidas/farmacología , Péptidos/farmacología , Péptidos/química
5.
Biomed Pharmacother ; 155: 113772, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36271554

RESUMEN

The objective of this study was to explore an innovative sustained release technology and design a new microporous resin-based polymer device (RPD) for controlled release of glipizide (GZ). Photocurable resin was applied to prepare the resin layer to control GZ release. The impact of formulation parameters consisting of the type and amount of pore formers and pH modifiers, photocurable curing time as well as the weight of resin layer on GZ release were examined. The GZ-RPD was fabricated applying 24 mg of resin layer with PEG400 (100 % of the resin weight) as pore former and 10 mg of Na2CO3 as pH modifier. Scanning electron microscopy (SEM) demonstrated resin particles presenting a porous structure constituted the resin layer. The GZ-RPD possessed prolonged Tmax and reduced Cmax relative to commercial tablets. The relative bioavailability of the RPDs as well as commercial tablets was 93.65 % since the AUC0-24 h were 6111.05 ± 238.89 ng·h/mL and 6525.09 ± 760.59 ng h/mL, respectively. The release mechanism of the GZ-RPD was discussed. This paper provided an innovative concept to produce controlled GZ release oral formulation fabricated by photocurable resin, which demonstrated both excellent in vitro release and in vivo pharmacokinetics.


Asunto(s)
Glipizida , Polímeros , Glipizida/química , Glipizida/farmacocinética , Preparaciones de Acción Retardada/química , Comprimidos , Excipientes/química
6.
Front Public Health ; 10: 913169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812470

RESUMEN

Background: Hand, foot, and mouth disease (HFMD) is a febrile rash infection caused by enteroviruses, spreading mainly via the respiratory tract and close contact. In the past two decades, HFMD has been prevalent mainly in Asia, including China and South Korea, causing a huge disease burden and putting the lives and health of children at risk. Therefore, a further study of the factors influencing HFMD incidences has far-reaching implications. In existing studies, the environmental factors affecting such incidences are mainly divided into two categories: meteorological and air. Among these studies, the former are the majority of studies on HFMD. Some scholars have studied both factors at the same, but the number is not large and the findings are quite different. Methods: We collect monthly cases of HFMD in children, meteorological factors and atmospheric pollution in Urumqi from 2014 to 2020. Trend plots are used to understand the approximate trends between meteorological factors, atmospheric pollution and the number of HFMD cases. The association between meteorological factors, atmospheric pollution and the incidence of HFMD in the Urumqi region of northwest China is then investigated using multiple regression models. Results: A total of 16,168 cases in children are included in this study. According to trend plots, the incidence of HFMD shows a clear seasonal pattern, with O3 (ug/m3) and temperature (°C) showing approximately the same trend as the number of HFMD cases, while AQI, PM2.5 (ug/m3), PM10 (ug/m3) and NO2 (ug/m3) all show approximately opposite trends to the number of HFMD cases. Based on multiple regression results, O3 (P = 0.001) and average station pressure (P = 0.037) are significantly and negatively associated with HFMD incidences, while SO2 (P = 0.102), average dew point temperature (P = 0.072), hail (P = 0.077), and thunder (P = 0.14) have weak significant relationships with them.


Asunto(s)
Enfermedad de Boca, Mano y Pie , Niño , China/epidemiología , Enfermedad de Boca, Mano y Pie/epidemiología , Humanos , Incidencia , Conceptos Meteorológicos , Temperatura
7.
ACS Biomater Sci Eng ; 8(8): 3424-3437, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35878006

RESUMEN

Novel copolymer brushes of quaternized sodium alginate-g-(2-ethyl-2-oxazoline)n are achieved by the grafting reaction of 2-ethyl-2-oxazoline (EOX) from benzyl bromide groups in quaternized sodium alginate (QSA). The average number of (EOX)n structural units is mediated from 1 to 5 by changing the molar ratio of the EOX monomer to benzyl bromide side groups. There exists obvious microphase separation between the QSA backbone and (EOX)n segments in the copolymer brushes due to their thermodynamic incompatibility. The strong hydrogen-bonding interaction between -OH groups in the backbone and N─C═O groups in (EOX)n segments is helpful for the construction of reversible supramolecular networks. The copolymer brushes show low cytotoxicity for HeLa cells and good antibacterial properties for Escherichia coli and Staphylococcus aureus for the contribution of hydrophilic (EOX)n segments and antibacterial activity of the quaternary ammonium. The antiprotein behavior of polymer surfaces is improved after rearrangement of (EOX)n segments by tetrahydrofuran (THF) vapor induction. These copolymer brushes have good prospects for biomedical applications.


Asunto(s)
Alginatos , Polímeros , Alginatos/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli , Células HeLa , Humanos , Enlace de Hidrógeno , Polímeros/farmacología
8.
Sci Total Environ ; 817: 152986, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032784

RESUMEN

The wastewater discharged from atmosphere-vacuum distillation of oil refining process contains a high concentration of phenolic compounds, which are toxic and not eco-friendly. Direct discharge of the untreated wastewater will have an adverse impact on the surrounding environment. This paper proposes a multi-dimensional synergistic extraction solution to realize the effective disposal of atmosphere-vacuum distillation wastewater. Firstly, extraction experiments are conducted to select the optimal extractant. Secondly, the microscopic mechanism of separating phenolic compounds from wastewater with synergistic extractant of methyl isobutyl ketone and n-pentanol is investigated by molecular dynamics simulation. Finally, the synergistic extraction process is modeled and optimized based on above multi-dimensional analyses. The optimization is performed through sensitivity analysis from three aspects: operating parameters, synergistic extractant cycling, and waste heat recovery. A control scheme is then designed to maintain the smooth operation of synergistic extraction process. Feed disturbances are specifically added to test the anti-interference capability of the control scheme. With the novel treatment process proposed in this paper, the removal rate of phenolic compounds from atmosphere-vacuum distillation wastewater reaches 93.02%.


Asunto(s)
Aguas Residuales , Purificación del Agua , Destilación/métodos , Membranas Artificiales , Fenoles , Vacio , Purificación del Agua/métodos
9.
ACS Appl Mater Interfaces ; 13(33): 39806-39818, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34387459

RESUMEN

Silver nanomaterials have attracted a great deal of interest due to their broad-spectrum antimicrobial activity. However, it is still challenging to balance the high antibacterial efficiency with low damage to biological cells of silver nanostructures, especially when the diameter decreases to less than 10 nm. Here, we developed a new type of Ag nanohybrid material via a unimolecular micelle template method, which presents amazing antibacterial activities and almost noncytotoxicity. First, water-soluble multiarm star-shaped brushlike copolymer α-CD-g-[(PEO40-g-PAA50)-b-PEO5]18 was precisely synthesized and its micelle behavior in different solvents was revealed. Then, nanocrystal clusters assembled by Ag grains (Ag@Template NCs) were prepared through an in situ redox route using the unimolecular micelle of α-CD-g-[(PEO40-g-PAA50)-b-PEO5]18 as the soft template, AgNO3 as a precursor, and tetrabutylammonium borohydride (TBAB) as the reducing agent. The overall size of the achieved Ag@Template NCs is controlled by the template structure at around 40 nm (Dh in DMF), and the size of the Ag grain can be easily regulated from ∼1 to ∼5 nm by adjusting the feeding ratio of AgNO3/acrylic acid (AA) units in the template from 1:10 to 1:1. Benefitting from the structural design of the template, all Ag@Template NCs prepared here exhibit excellent dispersibility and chemical stability in different aqueous environments (neutral, pH = 5.5, and 0.9% NaCl physiological saline solution), which play a crucial role in the long-term storage and potential application in a complex physiological environment. The antibacterial and cytotoxicity tests indicate that Ag@Template NCs display much better performance than Ag nanoparticles (Ag NPs), which have a comparable overall size of ∼25 nm. The inhibitory capability of Ag@Template NCs to bacteria strongly depends on the grain size. Specifically, the Ag@Template-1 NC assembled by the smallest grains (1.6 ± 0.3 nm) presents the best antibacterial activity. For E. coli (-), the MIC value is as low as 5 µg/mL (0.36 µg/mL of Ag), while for S. aureus (+), the value is around 10 µg/mL (0.72 µg/mL of Ag). The survival rate of L02 cells and lactate dehydrogenase assay together illustrate the low cytotoxicity possessed by the prepared Ag@Template NCs. Therefore, the proposed Ag@Template NC structure successfully resolves the high reactivity, instability, and fast oxidation issues of the ultrasmall Ag nanoparticles, and integrates high antibacterial efficiency and nontoxicity to biological cells into one platform, which implies its broad potential application in biomedicine.


Asunto(s)
Antibacterianos/efectos adversos , Antibacterianos/química , Nanopartículas del Metal/química , Plata/química , Antibacterianos/metabolismo , Borohidruros/química , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Polímeros/química , Compuestos de Amonio Cuaternario/química , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Nanomedicina Teranóstica
10.
J Colloid Interface Sci ; 600: 421-429, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34023703

RESUMEN

Multi-stimuli responsive fluorescence probe could pave the way for monitoring more complex environmental changes. Here we prepared multifunctional nanoparticle Fe3O4@SiO2@P(DMAEMA-co-TPEE), which displayed yolk-shell morphology with well-defined polymer brush. With superparamagnetic Fe3O4 component and pH/temperature dual sensitive PDMAEMA polymer brush, the as prepared nanoparticles (YS-NPs) exhibited as multi-stimuli responsive fluorescence probe for real-time visual monitoring of environmental changes such as magnetic field, temperature and pH. Such YS-NPs could also be applied as a sensitive detector for CO2 in aqueous solution. Notably, the solution of YS-NPs showed high colloidal stability during the environmental changes, and surface aggregation-induced emission (S-AIE) was proposed for the aggregation of TPE residue on the surface of YS-NPs.


Asunto(s)
Nanocompuestos , Nanopartículas , Polímeros , Temperatura
11.
Drug Des Devel Ther ; 14: 2959-2975, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801637

RESUMEN

BACKGROUND AND PURPOSE: The traditional Chinese medicine, diosgenin (Dio), has attracted increasing attention because it possesses various therapeutic effects, including anti-tumor, anti-infective and anti-allergic properties. However, the commercial application of Dio is limited by its extremely low aqueous solubility and inferior bioavailability in vivo. Soluplus, a novel excipient, has great solubilization and capacity of crystallization inhibition. The purpose of this study was to prepare Soluplus-mediated Dio amorphous solid dispersions (ASDs) to improve its solubility, bioavailability and stability. METHODS: The crystallization inhibition studies were firstly carried out to select excipients using a solvent shift method. According to solubility and dissolution results, the preparation methods and the ratios of drug to excipient were further optimized. The interaction between Dio and Soluplus was characterized by differential scanning calorimetry (DSC), fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (PXRD) and molecular docking. The pharmacokinetic study was conducted to explore the potential of Dio ASDs for oral administration. Furthermore, the long-term stability of Dio ASDs was also investigated. RESULTS: Soluplus was preliminarily selected from various excipients because of its potential to improve solubility and stability. The optimized ASDs significantly improved the aqueous solubility of Dio due to its amorphization and the molecular interactions between Dio and Soluplus, as evidenced by dissolution test in vitro, DSC, FT-IR spectroscopy, SEM, PXRD and molecular docking technique. Furthermore, pharmacokinetic studies in rats revealed that the bioavailability of Dio from ASDs was improved about 5 times. In addition, Dio ASDs were stable when stored at 40°C and 75% humidity for 6 months. CONCLUSION: These results indicated that Dio ASDs, with its high solubility, high bioavailability and high stability, would open a promising way in pharmaceutical applications.


Asunto(s)
Diosgenina/farmacocinética , Desarrollo de Medicamentos , Medicamentos Herbarios Chinos/farmacocinética , Excipientes/farmacocinética , Polietilenglicoles/farmacocinética , Polivinilos/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión , Cristalografía por Rayos X , Diosgenina/administración & dosificación , Composición de Medicamentos , Estabilidad de Medicamentos , Medicamentos Herbarios Chinos/administración & dosificación , Excipientes/administración & dosificación , Masculino , Medicina Tradicional China , Conformación Molecular , Simulación del Acoplamiento Molecular , Polietilenglicoles/administración & dosificación , Polivinilos/administración & dosificación , Ratas , Ratas Sprague-Dawley , Solubilidad , Espectrometría de Masas en Tándem
12.
Sheng Wu Gong Cheng Xue Bao ; 32(6): 761-774, 2016 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-29019185

RESUMEN

Bio-based polyamides are environment-friendly polymers. The precursors of bio-based polyamides come from bio-based materials such as castor oil, glucose and animal oil. Bio-based polyamides precursors include bio-based amino acids, bio-based lactams, bio-based diprotic acid and bio-based diamines. In this paper, we discussed the route of the precursors of bio-based polyamides that come from bio-based materials. We discussed the properties of bio-based polyamides. Bio-based PA11and bio-based PA1010 are well-known bio-based polyamides; we discussed the origin materials of the precursors, the route of manufacturing bio-based PA11 and PA1010, and their modifications status. The variety, classification and commercial production of bio-based polyamides were described in details, as well as bio-based polyamides development in China.


Asunto(s)
Biotecnología , Nylons/química , Animales , Aceite de Ricino , China , Glucosa , Polímeros
13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 25(8): 1371-4, 2005 Aug.
Artículo en Zh | MEDLINE | ID: mdl-16329525

RESUMEN

The crystallization characteristics of the ethylene terephthalate (ET) hard segments in ethylene terephthalate-epsilon-caprolactone (TCL) copolyesters were studied by wide-angle X-ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FTIR). It was found that in TCL copolyesters with high hard segment content, the ET hard segment can crystallize to form the crystals having the similar lattice structure as that of pure poly (ethylene terephthalate) (PET). The lamellar thickness and the crystallinity of the ET crystals depend on the ET segment sequence length. As the segment sequence length decreases, the lamellar thickness and the crystallinity decrease.


Asunto(s)
Caproatos/química , Lactonas/química , Polietilenglicoles/química , Cristalización , Ésteres , Estructura Molecular , Tereftalatos Polietilenos , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termodinámica , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA