Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 267(Pt 1): 131480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599427

RESUMEN

Bone regeneration remains a major clinical challenge, especially when infection necessitates prolonged antibiotic treatment. This study presents a membrane composed of self-assembled and interpenetrating GL13K, an antimicrobial peptide (AMP) derived from a salivary protein, in a collagen membrane for antimicrobial activity and enhanced bone regeneration. Commercially available collagen membranes were immersed in GL13K solution, and self-assembly was initiated by raising the solution pH to synthesize the multifunctional membrane called COL-GL. COL-GL was composed of interpenetrating large collagen fibers and short GL13K nanofibrils, which increased hydrophobicity, reduced biodegradation from collagenase, and stiffened the matrix compared to control collagen membranes. Incorporation of GL13K led to antimicrobial and anti-fouling activity against early oral surface colonizer Streptococcus gordonii while not affecting fibroblast cytocompatibility or pre-osteoblast osteogenic differentiation. GL13K in solution also reduced macrophage inflammatory cytokine expression and increased pro-healing cytokine expression. Bone formation in a rat calvarial model was accelerated at eight weeks with COL-GL compared to the gold-standard collagen membrane based on microcomputed tomography and histology. Interpenetration of GL13K within collagen sidesteps challenges with antimicrobial coatings on bone regeneration scaffolds while increasing bone regeneration. This strength makes COL-GL a promising approach to reduce post-surgical infections and aid bone regeneration in dental and orthopedic applications. STATEMENT OF SIGNIFICANCE: The COL-GL membrane, incorporating the antimicrobial peptide GL13K within a collagen membrane, signifies a noteworthy breakthrough in bone regeneration strategies for dental and orthopedic applications. By integrating self-assembled GL13K nanofibers into the membrane, this study successfully addresses the challenges associated with antimicrobial coatings, exhibiting improved antimicrobial and anti-fouling activity while preserving compatibility with fibroblasts and pre-osteoblasts. The accelerated bone formation observed in a rat calvarial model emphasizes the potential of this innovative approach to minimize post-surgical infections and enhance bone regeneration outcomes. As a promising alternative for future therapeutic interventions, this material tackles the clinical challenges of extended antibiotic treatments and antibiotic resistance in bone regeneration scenarios.


Asunto(s)
Péptidos Antimicrobianos , Regeneración Ósea , Colágeno , Membranas Artificiales , Nanofibras , Regeneración Ósea/efectos de los fármacos , Animales , Ratas , Nanofibras/química , Colágeno/química , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Osteogénesis/efectos de los fármacos , Ratones , Osteoblastos/efectos de los fármacos , Streptococcus gordonii/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Fibroblastos/efectos de los fármacos
2.
Acta Biomater ; 141: 70-88, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34971784

RESUMEN

Teeth, long-lasting percutaneous organs, feature soft tissue attachment through adhesive structures, hemidesmosomes, in the junctional epithelium basement membrane adjacent to teeth. This soft tissue attachment prevents bacterial infection of the tooth despite the rich - and harsh - microbial composition of the oral cavity. Conversely, millions of percutaneous devices (catheters, dental, and orthopedic implants) fail from infection yearly. Standard of care antibiotic usage fuels antimicrobial resistance and is frequently ineffective. Infection prevention strategies, like for dental implants, have failed in generating durable soft tissue adhesion - like that seen with the tooth - to prevent bacterial colonization at the tissue-device interface. Here, inspired by the impervious natural attachment of the junctional epithelium to teeth, we synthesized four cell adhesion peptide (CAPs) nanocoatings, derived from basement membranes, to promote percutaneous device soft tissue attachment. The two leading nanocoatings upregulated integrin-mediated hemidesmosomes, selectively increased keratinocyte proliferation compared to fibroblasts, which cannot form hemidesmosomes, and expression of junctional epithelium adhesive markers. CAP nanocoatings displayed marked durability under simulated clinical conditions and the top performer CAP nanocoating was validated in a percutaneous implant murine model. Basement membrane CAP nanocoatings, inspired by the tooth and junctional epithelium, may provide an alternative anti-infective strategy for percutaneous devices to mitigate the worldwide threat of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: Prevention and management of medical device infection is a significant healthcare challenge. Overzealous antibiotic use has motivated alternative material innovations to prevent infection. Here, we report implant cell adhesion peptide nanocoatings that mimic a long-lasting, natural "medical device," the tooth, through formation of cell adhesive structures called hemidesmosomes. Such nanocoatings sidestep the use of antimicrobial or antibiotic elements to form a soft-tissue seal around implants. The top performing nanocoatings prompted expression of hemidesmosomes and defensive factors to mimic the tooth and was validated in an animal model. Application of cell adhesion peptide nanocoatings may provide an alternative to preventing, rather that necessarily treating, medical device infection across a range of device indications, like dental implants.


Asunto(s)
Implantes Dentales , Inserción Epitelial , Animales , Antibacterianos/farmacología , Membrana Basal , Epitelio , Ratones , Péptidos , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA