Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 19(1): 124-134, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30521345

RESUMEN

The targeted delivery of therapeutics to sites of rheumatoid arthritis (RA) has been a long-standing challenge. Inspired by the intrinsic inflammation-targeting capacity of macrophages, a macrophage-derived microvesicle (MMV)-coated nanoparticle (MNP) was developed for targeting RA. The MMV was efficiently produced through a novel method. Cytochalasin B (CB) was applied to relax the interaction between the cytoskeleton and membrane of macrophages, thus stimulating MMV secretion. The proteomic profile of the MMV was analyzed by iTRAQ (isobaric tags for relative and absolute quantitation). The MMV membrane proteins were similar to those of macrophages, indicating that the MMV could exhibit bioactivity similar to that of RA-targeting macrophages. A poly(lactic- co-glycolic acid) (PLGA) nanoparticle was subsequently coated with MMV, and the inflammation-mediated targeting capacity of the MNP was evaluated both in vitro and in vivo. The in vitro binding of MNP to inflamed HUVECs was significantly stronger than that of the red blood cell membrane-coated nanoparticle (RNP). Compared with bare NP and RNP, MNP showed a significantly enhanced targeting effect in vivo in a collagen-induced arthritis (CIA) mouse model. The targeting mechanism was subsequently revealed according to the proteomic analysis, indicating that Mac-1 and CD44 contributed to the outstanding targeting effect of the MNP. A model drug, tacrolimus, was encapsulated in MNP (T-RNP) and significantly suppressed the progression of RA in mice. The present study demonstrates MMV as a promising and rich material, with which to mimic macrophages, and demonstrates that MNP is an efficient biomimetic vehicle for RA targeting and treatment.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Nanopartículas/administración & dosificación , Proteómica , Animales , Artritis Reumatoide/patología , Citocalasina B/química , Modelos Animales de Enfermedad , Eritrocitos/química , Eritrocitos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Receptores de Hialuranos/genética , Antígeno de Macrófago-1/genética , Macrófagos/química , Ratones , Nanopartículas/química , Poliésteres/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Tacrolimus
2.
ACS Nano ; 13(4): 4148-4159, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30855941

RESUMEN

Pore-forming toxins (PFTs) are the most common bacterial virulence proteins and play a significant role in the pathogenesis of bacterial infections; thus, PFTs are an attractive therapeutic target in bacterial infections. Inspired by the pore-forming process and mechanism of PFTs, we designed an integrated hybrid nanovesicle-the erythroliposome (called the RM-PL)-for PFT detoxification by fusing natural red blood cell (RBC) membranes with artificial lipid membranes. The lipid and RBC membranes were mutually beneficial when integrated into a hybrid nanovesicle structure. The RBC membrane endowed RM-PLs with the capacity for detoxification, while the PEGylated lipid membrane stabilized the RM-PLs and greatly improved the detoxification capacity of the RBC membrane. With α-hemolysin (Hlα) as a model PFT, we demonstrated that RM-PLs could not only significantly reduce the toxicity of Hlα to erythrocytes in vitro but also effectively sponge Hlα in vivo and rescue mice from Hlα-induced damage. Moreover, the high detoxification capacity of RM-PLs was shown to be partly related to the expression of the Hlα receptor protein, a disintegrin and metalloproteinase domain-containing protein 10 on the RBC membrane. Consequently, as a component integrating natural and artificial materials, the erythroliposome nanoplatform inspires potential strategies for antivirulence therapy.


Asunto(s)
Membrana Eritrocítica/metabolismo , Proteínas Hemolisinas/aislamiento & purificación , Liposomas/uso terapéutico , Infecciones Estafilocócicas/terapia , Staphylococcus aureus/fisiología , Animales , Proteínas Hemolisinas/metabolismo , Liposomas/metabolismo , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/uso terapéutico , Membranas Artificiales , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Desnudos , Infecciones Estafilocócicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA