Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pak J Pharm Sci ; 36(2): 397-407, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37530146

RESUMEN

The present study aimed to evaluate the effect of a mouthwash containing a novel compound Chinese herbal medicine (artemisia capillaris, chrysanthemum, honeysuckle, angelica dahurica and asarum sieboldii) on oral ulcers and analyze sub chronic oral toxicity in rats. For efficacy study, mouthwash was administered on the ulcer area twice daily. Compared with the control group, healing time in the test group was shorter and the ulcer area was smaller. Histological analysis showed less inflammatory cell infiltration in the test group. For sub chronic oral toxicity, mouthwash was administered by oral gavage for 93 consecutive days. There were no significant differences in body weight, food consumption or organ coefficients between the test and control groups. Some parameters of haematology and serum chemistry were statistically different but within normal physiological ranges. No obvious abnormalities were found in the necropsies and histopathological observations. In conclusion, the compound Chinese herbal medicine mouthwash promoted oral ulcer healing in rats with no obvious sub chronic toxicity, providing a potential alternative therapeutic strategy for oral ulcers.


Asunto(s)
Medicamentos Herbarios Chinos , Úlceras Bucales , Ratas , Animales , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/toxicidad , Antisépticos Bucales , Úlceras Bucales/inducido químicamente , Úlceras Bucales/tratamiento farmacológico , Úlcera
2.
Clin Oral Investig ; 22(8): 2675-2684, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30238416

RESUMEN

OBJECTIVES: The aim of this study was to further evaluate the caries-arresting effectiveness of micro-invasive interventions for non-cavitated proximal caries and analyze their efficacy for caries lesions of different depths. MATERIALS AND METHODS: Randomized clinical trials (RCTs) of micro-invasive interventions for non-cavitated proximal caries were included in this study. We searched the Cochrane Library, PubMed, Embase, and Web of Science on May 25, 2017, without restrictions. After duplicate study selection, data extraction, and risk of bias assessment, a meta-analysis of the odds ratios (OR) with 95% confidence intervals (95% CIs) and a publication bias analysis were conducted using Stata 12.0. RESULTS: After 2195 citations were screened, 8 citations of seven studies with follow-up periods from 12 to 36 months were included. The subgroup analysis showed that resin infiltration and resin sealant, but not glass ionomer cement (GIC), could reduce the caries progression rate (resin infiltration: OR = 0.15, 95% CI 0.09 to 0.24; resin sealant: OR = 0.33, 95% CI 0.19 to 0.58; GIC: OR = 0.13, 95% CI 0.01 to 2.65). Further analysis of their efficacies for caries lesions of different depths indicated that resin infiltration could arrest progression of enamel caries and caries around the enamel-dentin junction (EDJ) (enamel: OR = 0.05, 95% CI 0.01 to 0.35; EDJ: OR = 0.07, 95% CI 0.01 to 0.70). However, when the outer third of the dentin was involved, resin infiltration yielded significantly different results compared with the control group (OR = 0.42, 95% CI 0.16 to 1.10). Resin sealant seemed to be ineffective regardless of the caries depth (enamel: OR = 0.62, 95% CI 0.13 to 3.00; EDJ: OR = 0.44, 95% CI 0.09 to 2.15; dentin: OR = 0.43, 95% CI 0.07 to 2.63). CONCLUSIONS: Resin infiltration is effective in arresting the progression of non-cavitated proximal caries involved in EDJ, while the therapeutic effects of resin sealant for different caries depths still needs to be further confirmed. CLINICAL RELEVANCE: Based on existing evidence, dentists should carefully select appropriate micro-invasive interventions according to the different depths of non-cavitated proximal caries.


Asunto(s)
Caries Dental/terapia , Selladores de Fosas y Fisuras/uso terapéutico , Caries Dental/patología , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Microbiol Spectr ; 10(4): e0104522, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35708336

RESUMEN

The persistence of residual bacteria, particularly Enterococcus faecalis, contributes to refractory periapical periodontitis, which still lacks effective therapy. The role of receptor-interacting protein kinase 3 (RIPK3)- and mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis, a highly proinflammatory form of regulated cell death, has recently drawn much attention. However, the role of necroptosis in the pathogenesis of refractory periapical periodontitis remains unclear. We investigated whether the RIPK3/MLKL signaling pathway was activated in periapical lesion specimens obtained from patients diagnosed with refractory periapical periodontitis. RIPK3-deficient mice were then used to determine the role of necroptosis under this condition in vivo. We found that the phosphorylation levels of RIPK3 and MLKL were elevated in periapical lesion specimens of patients with refractory periapical periodontitis. In addition, necroptosis was induced in an E. faecalis-infected refractory periapical periodontitis mouse model, in which inhibition of necroptosis by RIPK3 deficiency could markedly alleviate inflammation and bone destruction. Moreover, double-labeling immunofluorescence suggested that macrophage necroptosis may be involved in the development of refractory periapical periodontitis. Then, we established an in vitro macrophage infection model with E. faecalis. E. faecalis infection was found to induce necroptotic cell death in macrophages through the RIPK3/MLKL signaling pathway, which was markedly alleviated by the RIPK3- or MLKL-specific inhibitor. Our study revealed that RIPK3/MLKL-mediated macrophage necroptosis contributes to the development of refractory periapical periodontitis and suggests that inhibitors or treatments targeting necroptosis represent a plausible strategy for the management of refractory periapical periodontitis. IMPORTANCE Oral infectious diseases represent a major neglected global population health challenge, imposing an increasing burden on public health and economy. Refractory apical periodontitis (RAP), mainly caused by Enterococcus faecalis, is a representative oral infectious disease with considerable therapeutic challenges. The interplay between E. faecalis and the host often leads to the activation of programmed cell death. This study identifies an important role of macrophage necroptosis induced by E. faecalis in the pathogenesis of RAP. Manipulating RIPK3/MLKL-mediated necroptosis may represent novel therapeutic targets, not only for RAP but also for other E. faecalis-associated infectious diseases.


Asunto(s)
Enfermedades Transmisibles , Periodontitis Periapical , Animales , Enterococcus faecalis , Macrófagos/metabolismo , Ratones , Necroptosis , Proteínas Quinasas/metabolismo
4.
Front Cell Dev Biol ; 9: 661116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859987

RESUMEN

Dental pulp stem cell (DPSC) transplantation has shown new prospects in dental pulp regeneration, and is of great significance in the treatment of pulpitis and pulp necrosis. The fate and regenerative potential of stem cells are dependent, to a great extent, on their microenvironment, which is composed of various tissue components, cell populations, and soluble factors. N-cadherin-mediated cell-cell interaction has been implicated as an important factor in controlling the cell-fate commitment of mesenchymal stem cells. In this study, the effect of N-cadherin on odontogenic differentiation of DPSCs and the potential underlying mechanisms, both in vitro and in vivo, was investigated using a cell culture model and a subcutaneous transplantation mouse model. It was found that the expression of N-cadherin was reversely related to the expression of odontogenic markers (dentin sialophosphoprotein, DSPP, and runt-related transcription factor 2, Runx2) during the differentiation process of DPSCs. Specific shRNA-mediated knockdown of N-cadherin expression in DPSCs significantly increased the expression of DSPP and Runx2, alkaline phosphatase (ALP) activity, and the formation of mineralized nodules. Notably, N-cadherin silencing promoted nucleus translocation and accumulation of ß-catenin. Inhibition of ß-catenin by a specific inhibitor XAV939, reversed the facilitating effects of N-cadherin downregulation on odontogenic differentiation of DPSCs. In addition, knockdown of N-cadherin promoted the formation of odontoblast-like cells and collagenous matrix in ß-tricalcium phosphate/DPSCs composites transplanted into mice. In conclusion, N-cadherin acted as a negative regulator via regulating ß-catenin activity during odontogenic differentiation of DPSCs. These data may help to guide DPSC behavior by tuning the N-cadherin-mediated cell-cell interactions, with implications for pulp regeneration.

5.
J Appl Oral Sci ; 29: e20200266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33825761

RESUMEN

OBJECTIVES: We analyzed the effects of the Er:YAG laser used with different parameters on dentinal tubule (DT) occlusion, intrapulpal temperature and pulp tissue morphology in order to determine the optimal parameters for treating dentin hypersensitivity. METHODOLOGY: Dentin specimens prepared from 36 extracted human third molars were randomized into six groups according to the treatment method (n=6 each): control (A); Gluma desensitizer (B); and Er:YAG laser treatment at 0.5 W , 167 J/cm2 (50 mJ, 10 Hz) (C), 1 W , 334 J/cm2 (50 mJ, 20 Hz) (D), 2 W , 668 J/cm2 (100 mJ, 20 Hz) (E), and 4 W and 1336 J/cm2 (200 mJ, 20 Hz) (F). Treatment-induced morphological changes of the dentin surfaces were assessed using scanning electron microscopy (SEM) to find parameters showing optimal dentin tubule occluding efficacy. To further verify the safety of these parameters (0.5 W, 167 J/cm2), intrapulpal temperature changes were recorded during laser irradiation, and morphological alterations of the dental pulp tissue were observed with an upright microscope. RESULTS: Er:YAG laser irradiation at 0.5 W (167 J/cm2) were found to be superior in DT occlusion, with an exposure rate significantly lower than those in the other groups (P<0.05). Intrapulpal temperature changes induced by Er:YAG laser irradiation at 0.5 W (167 J/cm2) with (G) and without (H) water and air cooling were demonstrated to be below the threshold. Also, no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. CONCLUSION: Therefore, 0.5 W (167 J/cm2) is a suitable parameter for Er:YAG laser to occlude DTs, and it is safe to the pulp tissue.


Asunto(s)
Láseres de Estado Sólido , Oclusión Dental , Dentina , Humanos , Láseres de Estado Sólido/uso terapéutico , Microscopía Electrónica de Rastreo
6.
Trials ; 22(1): 436, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34229752

RESUMEN

BACKGROUND: Dental pulp necrosis, a common health problem, is traditionally treated with root canal therapy; however, it fails in restoring the vitality of damaged pulp. Most studies regarding regenerative endodontic therapy (RET) are limited to the treatment of immature necrotic teeth. Given that injectable platelet-rich fibrin (i-PRF) has shown great potential in regenerative medicine as a novel platelet concentration, this study is designed to explore whether i-PRF can serve as a biological scaffold, extending the indications for RET and improving the clinical feasibility of RET in mature permanent teeth with pulp necrosis. METHODS: This is a randomised, double-blind, controlled, multicentre clinical trial designed to evaluate the clinical feasibility of RET for mature permanent teeth with pulp necrosis and to compare the efficacy of i-PRF and blood clots as scaffolds in RET. A total of 346 patients will be recruited from three centres and randomised at an allocation ratio of 1:1 to receive RET with either a blood clot or i-PRF. The changes in subjective symptoms, clinical examinations, and imaging examinations will be tracked longitudinally for a period of 24 months. The primary outcome is the success rate of RET after 24 months. The secondary outcome is the change in pulp vitality measured via thermal and electric pulp tests. In addition, the incidence of adverse events such as discolouration, reinfection, and root resorption will be recorded for a safety evaluation. DISCUSSION: This study will evaluate the clinical feasibility of RET in mature permanent teeth with pulp necrosis, providing information regarding the efficacy, benefits, and safety of RET with i-PRF. These results may contribute to changes in the treatment of pulp necrosis in mature permanent teeth and reveal the potential of i-PRF as a novel biological scaffold for RET. TRIAL REGISTRATION: ClinicalTrials.gov NCT04313010 . Registered on 19 March 2020.


Asunto(s)
Fibrina Rica en Plaquetas , Endodoncia Regenerativa , Necrosis de la Pulpa Dental/diagnóstico por imagen , Necrosis de la Pulpa Dental/terapia , Humanos , Estudios Multicéntricos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , Regeneración , Tratamiento del Conducto Radicular
7.
Chem Biol Drug Des ; 94(4): 1768-1781, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31207076

RESUMEN

Streptococcus mutans (S. mutans) is known to be a leading cariogenic pathogen in the oral cavity. Antimicrobial peptides possess excellent properties to combat such pathogens. In this study, we compared the antimicrobial activity of novel linear reutericin 6- and/or gassericin A-inspired peptides and identified LR-10 as the leading peptide. Antibacterial assays demonstrate that LR-10 is more active against S. mutans (3.3 µM) than many peptide-based agents without resistance selection, capable of killing many oral pathogens, and tolerant of physiological conditions. LR-10 also presented a faster killing rate than chlorhexidine and erythromycin, and appeared to display selective activity against S. mutans within 10 s. S. mutans is usually encased in plaque biofilms. Biofilm inhibitory assays indicated that LR-10 had excellent inhibitory effect on the biofilm formation of S. mutans and biofilm-encased cells in vitro at low concentrations (6.5 µM). Consistent with most peptides, LR-10 kills S. mutans mainly by disrupting the cell membranes. Notably, both hemolytic activity assays and cytotoxicity tests indicated that LR-10 could keep biocompatible at the effective concentrations. Hence, LR-10 could be a good candidate for clinical treatment of dental caries.


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Caries Dental/tratamiento farmacológico , Péptidos , Streptococcus mutans/fisiología , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Humanos , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(7): 823-829, 2019 Jul 30.
Artículo en Zh | MEDLINE | ID: mdl-31340916

RESUMEN

OBJECTIVE: To construct antimicrobial peptides with potent antimicrobial activity, low cytotoxicity and efficient killing rate of Streptococcus mutans for prevention and treatment of dental caries. METHODS: We exploited the existing design strategies to modify reutericin 6 or gassericin A produced by Lactobacillus species in the oral cavity based on their cationicity, amphipathicity and α-helical structure. We examined their antimicrobial activities using bacterial susceptibility assay, their cytotoxicity through cytotoxicity assay and their killing rate of Streptococcus mutans with time-kill assay. We further evaluated the candidate derivatives for their killing rate against Streptococcus mutans, their antimicrobial activity against different oral pathogens and the development of drug resistance. RESULTS: We constructed 6 AT-1 derivatives, among which AT-7 showed an MIC of 3.3 µmol/L against Streptococcus mutans, Porphyromonas gingivalis and Actinomyces viscosus with a killing rate of 88.7% against Streptococcus mutans within 5 min. We did not obtain de novo strains of Streptococcus mutans resistant to AT- 7 after induction for 10 passages. CONCLUSIONS: Hydrophobicity and imperfect amphipathic structure are two key parameters that define the antimicrobial potency of the antimicrobial peptides. The imperfectly amphipathic peptide AT-7 shows the potential for clinical application in dental caries treatment.


Asunto(s)
Caries Dental , Antiinfecciosos , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos , Streptococcus mutans
9.
J. appl. oral sci ; 29: e20200266, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1180799

RESUMEN

Abstract Objectives We analyzed the effects of the Er:YAG laser used with different parameters on dentinal tubule (DT) occlusion, intrapulpal temperature and pulp tissue morphology in order to determine the optimal parameters for treating dentin hypersensitivity. Methodology Dentin specimens prepared from 36 extracted human third molars were randomized into six groups according to the treatment method (n=6 each): control (A); Gluma desensitizer (B); and Er:YAG laser treatment at 0.5 W , 167 J/cm2 (50 mJ, 10 Hz) (C), 1 W , 334 J/cm2 (50 mJ, 20 Hz) (D), 2 W , 668 J/cm2 (100 mJ, 20 Hz) (E), and 4 W and 1336 J/cm2 (200 mJ, 20 Hz) (F). Treatment-induced morphological changes of the dentin surfaces were assessed using scanning electron microscopy (SEM) to find parameters showing optimal dentin tubule occluding efficacy. To further verify the safety of these parameters (0.5 W, 167 J/cm2), intrapulpal temperature changes were recorded during laser irradiation, and morphological alterations of the dental pulp tissue were observed with an upright microscope. Results Er:YAG laser irradiation at 0.5 W (167 J/cm2) were found to be superior in DT occlusion, with an exposure rate significantly lower than those in the other groups (P<0.05). Intrapulpal temperature changes induced by Er:YAG laser irradiation at 0.5 W (167 J/cm2) with (G) and without (H) water and air cooling were demonstrated to be below the threshold. Also, no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. Conclusion Therefore, 0.5 W (167 J/cm2) is a suitable parameter for Er:YAG laser to occlude DTs, and it is safe to the pulp tissue.


Asunto(s)
Humanos , Láseres de Estado Sólido/uso terapéutico , Microscopía Electrónica de Rastreo , Oclusión Dental , Dentina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA