Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 220: 112399, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34091187

RESUMEN

The Rotimer, a rotifer-specific biopolymer, is an exogenic bioactive exudate secreted by different monogonant species (e.g. Euchlanis dilatata or Lecane bulla). The production of this viscoelastic biomolecule is induced by different micro-particles, thereby forming a special Rotimer-Inductor Conglomerate (RIC) in a web format. In this case, the water insoluble Carmine crystals, filtered to size (max. diameter was 50 µm), functioned as an inductor. The RIC production is an adequate empirical indicator to follow up this filamentous biopolymer secretion experientially; moreover, this procedure is very sensitive to the environmental factors (temperature, pH, metals and possible natural pollutant agents). The above mentioned species show completely different reactions to these factors, except to the presence of calcium and to the modulating effects of different drugs. One of the novelties of this work is that the Rotimer secretion and consequently, the RIC-formation is a mutually obligatory and evolutionary calcium-dependent process in the concerned monogonants. This in vivo procedure needs calcium, both for the physiology of animals and for fiber formation, particularly in the latter case. The conglomerate covered area (%) and the detection of the longest filament (mm) of the given RIC were the generally and simultaneously applied methods in the current modulating experiments. Exploring the regulatory (e.g. calcium-dependency) and stimulating (e.g. Lucidril effect) possibilities of biopolymer secretion are the basis for optimizing the RIC-production capacities of these micro-metazoans.


Asunto(s)
Biopolímeros/biosíntesis , Calcio/farmacología , Ambiente , Contaminantes Ambientales/farmacología , Exudados y Transudados , Rotíferos/metabolismo , Animales , Concentración de Iones de Hidrógeno , Rotíferos/efectos de los fármacos , Temperatura
2.
Ecotoxicol Environ Saf ; 208: 111666, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396176

RESUMEN

The chemical ecology of rotifers has been little studied. A yet unknown property is presented within some monogonant rotifers, namely the ability to produce an exogenic filamentous biopolymer, named 'Rotimer'. This rotifer-specific viscoelastic fiber was observed in six different freshwater monogonants (Euchlanis dilatata, Lecane bulla, Lepadella patella, Itura aurita, Colurella adriatica and Trichocerca iernis) in exception of four species. Induction of Rotimer secretion can only be achieved by mechanically irritating rotifer ciliate with administering different types (yeast cell skeleton, denatured BSA, epoxy, Carmine or urea crystals and micro-cellulose) and sizes (approx. from 2.5 to 50 µm diameter) of inert particles, as inductors or visualization by adhering particles. The thickness of this Rotimer is 33 ± 3 nm, detected by scanning electron microscope. This material has two structural formations (fiber or gluelike) in nano dimension. The existence of the novel adherent natural product becomes visible by forming a 'Rotimer-Inductor Conglomerate' (RIC) web structure within a few minutes. The RIC-producing capacity of animals, depends on viability, is significantly modified according to physiological- (depletion), drug- (toxin or stimulator) and environmental (temperature, salt content and pH) effects. The E. dilatata-produced RIC is affected by protein disruptors but is resistant to several chemical influences and its Rotimer component has an overwhelming cell (algae, yeast and human neuroblastoma) motility inhibitory effect, associated with low toxicity. This biopolymer-secretion-capacity is protective of rotifers against human-type beta-amyloid aggregates.


Asunto(s)
Biopolímeros/metabolismo , Rotíferos/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Biopolímeros/química , Biopolímeros/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Agua Dulce/microbiología , Humanos , Rotíferos/clasificación , Rotíferos/efectos de los fármacos , Temperatura
3.
Adv Clin Exp Med ; 31(9): 931-935, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36000877

RESUMEN

There are numerous surprising discoveries in current comprehensive biopolymer research, including the description of new types of biopolymers and the extension of their applications. The discovery of a new rotifer-specific biopolymer family (Rotimers) and the exceptional ability of these micrometazoans to inactivate and catabolize human-type neurotoxic aggregates (e.g., beta-amyloids, alpha-synucleins, prions) by their exudates can be mentioned as the original work of our research group. Rotimers are exogenous and protein complex molecules with a calcium-dependent production mechanism in both bdelloid and monogonant rotifers. However, their experimental and application possibilities are still unknown; only part of the class has been explored and described. Current Rotimer-related studies present promising biodiversity and bioactivity of these biomaterials (e.g., antiand disaggregation effects or high degrees of adhesion to other molecules). The primary objective of current research is to explore and develop their application in translational biomedicine. A key area is the design of drug candidates against neurodegeneration-related aggregates based on the molecular information provided by the composition, structure and function of Rotimers. These novel biomaterials have the potential to open new perspectives in the pharmaceutical industry and healthcare.


Asunto(s)
Priones , Rotíferos , Animales , Materiales Biocompatibles , Biopolímeros/metabolismo , Biopolímeros/farmacología , Calcio/metabolismo , Humanos , Priones/metabolismo , Priones/farmacología , Rotíferos/metabolismo , Sinucleínas/metabolismo
4.
Int J Biol Macromol ; 211: 669-677, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35588974

RESUMEN

The rotifer-specific exogenic biopolymer, named Rotimer and its related molecular processes are affected by physical and chemical factors (e.g., temperature, pH or metal ions); however, the study of biological influences (e.g., the presence protozoa) concerning the particle-dependent reproduction (egg laying) and 'biopolymer producing capacity' (BPC) of rotifers is the objective of the present work. Non-planktonic rotifer species (Philodina acuticornis, Adineta vaga, Euchlanis dilatata, and Lecane bulla) were studied in paired micrometazoa-protozoa co-cultures involving Paramecium, Diplonema, and Amoeba. These protozoa can be beneficial food sources, enhancing reproduction, or even toxic factors for the above-mentioned animals, but can also function as particle-like mechanical stimulators. Furthermore, current studies reveal that bdelloids, similarly to monogonants, produce filamentous exudate; moreover, the body of bdelloids is covered by their exudate, unlike that of monogonants, especially in the case of A. vaga. A mathematical formula was developed as an improved version of a previously published viability marker to characterize the BPC and the relative amount of produced exudate in different conditions. Rotifer species secreting biopolymers appear to be a general trait indicating a common evolutionary background (e.g., calcium- and particle dependency) of such molecules; therefore, the BPC becomes an experiential sublethal influencing marker to these micrometazoans.


Asunto(s)
Rotíferos , Animales , Evolución Biológica , Biopolímeros , Técnicas de Cocultivo , Reproducción
5.
Int J Biol Macromol ; 201: 262-269, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34999044

RESUMEN

Neurodegeneration-related human-type beta-amyloid 1-42 aggregates (H-Aß) are one of the biochemical markers and executive molecules in Alzheimer's disease. The exogenic rotifer-specific biopolymer, namely Rotimer, has a protective effect against H-Aß toxicity on Euchlanis dilatata and Lecane bulla monogonant rotifers. Due to the external particle-dependent secreting activity of these animals, this natural exudate exists in a bound form on the surface of epoxy-metal beads, named as Rotimer Inductor Conglomerate (RIC). In this current work the experiential in vitro molecular interactions between Rotimer and Aßs are presented. The RIC form was uniformly used against H-Aß aggregation processes in stagogram- and fluorescent-based experiments. These well-known cell-toxic aggregates stably and quickly (only taking a few minutes) bind to RIC. The epoxy beads (as carriers) alone or the scrambled version of H-Aß (with random amino acid sequence) were the ineffective and inactive negative controls of this experimental system. The RIC has significant interacting, anti-aggregating and disaggregating effects on H-Aß. To detect these experiments, Bis-ANS and Thioflavin T were applied during amyloid binding, two aggregation-specific functional fluorescent dyes with different molecular characteristics. This newly described empirical interaction of Rotimer with H-Aß is a potential starting point and source of innovation concerning targeted human- and pharmaceutical applications.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/metabolismo , Amiloide/química , Péptidos beta-Amiloides/metabolismo , Animales , Biopolímeros/farmacología , Colorantes Fluorescentes/farmacología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA