Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 107(4): 763-777, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937143

RESUMEN

Distal hereditary motor neuropathies (HMNs) and axonal Charcot-Marie-Tooth neuropathy (CMT2) are clinically and genetically heterogeneous diseases characterized primarily by motor neuron degeneration and distal weakness. The genetic cause for about half of the individuals affected by HMN/CMT2 remains unknown. Here, we report the identification of pathogenic variants in GBF1 (Golgi brefeldin A-resistant guanine nucleotide exchange factor 1) in four unrelated families with individuals affected by sporadic or dominant HMN/CMT2. Genomic sequencing analyses in seven affected individuals uncovered four distinct heterozygous GBF1 variants, two of which occurred de novo. Other known HMN/CMT2-implicated genes were excluded. Affected individuals show HMN/CMT2 with slowly progressive distal muscle weakness and musculoskeletal deformities. Electrophysiological studies confirmed axonal damage with chronic neurogenic changes. Three individuals had additional distal sensory loss. GBF1 encodes a guanine-nucleotide exchange factor that facilitates the activation of members of the ARF (ADP-ribosylation factor) family of small GTPases. GBF1 is mainly involved in the formation of coatomer protein complex (COPI) vesicles, maintenance and function of the Golgi apparatus, and mitochondria migration and positioning. We demonstrate that GBF1 is present in mouse spinal cord and muscle tissues and is particularly abundant in neuropathologically relevant sites, such as the motor neuron and the growth cone. Consistent with the described role of GBF1 in Golgi function and maintenance, we observed marked increase in Golgi fragmentation in primary fibroblasts derived from all affected individuals in this study. Our results not only reinforce the existing link between Golgi fragmentation and neurodegeneration but also demonstrate that pathogenic variants in GBF1 are associated with HMN/CMT2.


Asunto(s)
Axones/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Factores de Intercambio de Guanina Nucleótido/genética , Debilidad Muscular/genética , Atrofia Muscular Espinal/genética , Anomalías Musculoesqueléticas/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Axones/patología , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/patología , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Heterocigoto , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Debilidad Muscular/diagnóstico , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Anomalías Musculoesqueléticas/diagnóstico , Anomalías Musculoesqueléticas/metabolismo , Anomalías Musculoesqueléticas/patología , Mutación , Linaje , Cultivo Primario de Células , Médula Espinal/anomalías , Médula Espinal/metabolismo
2.
Hum Mutat ; 39(3): 415-432, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29235198

RESUMEN

Histidyl-tRNA synthetase (HARS) ligates histidine to cognate tRNA molecules, which is required for protein translation. Mutations in HARS cause the dominant axonal peripheral neuropathy Charcot-Marie-Tooth disease type 2W (CMT2W); however, the precise molecular mechanism remains undefined. Here, we investigated three HARS missense mutations associated with CMT2W (p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly). The three mutations localize to the HARS catalytic domain and failed to complement deletion of the yeast ortholog (HTS1). Enzyme kinetics, differential scanning fluorimetry (DSF), and analytical ultracentrifugation (AUC) were employed to assess the effect of these substitutions on primary aminoacylation function and overall dimeric structure. Notably, the p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly HARS substitutions all led to reduced aminoacylation, providing a direct connection between CMT2W-linked HARS mutations and loss of canonical ARS function. While DSF assays revealed that only one of the variants (p.Val155Gly) was less thermally stable relative to wild-type, all three HARS mutants formed stable dimers, as measured by AUC. Our work represents the first biochemical analysis of CMT-associated HARS mutations and underscores how loss of the primary aminoacylation function can contribute to disease pathology.


Asunto(s)
Axones/patología , Histidina-ARNt Ligasa/metabolismo , Enfermedades del Sistema Nervioso Periférico/enzimología , Enfermedades del Sistema Nervioso Periférico/patología , Secuencia de Aminoácidos , Aminoacilación , Biocatálisis , Dominio Catalítico , Secuencia Conservada , Femenino , Prueba de Complementación Genética , Histidina-ARNt Ligasa/química , Histidina-ARNt Ligasa/genética , Histidina-ARNt Ligasa/aislamiento & purificación , Humanos , Cinética , Masculino , Mutación/genética , Linaje , Enfermedades del Sistema Nervioso Periférico/genética , Multimerización de Proteína , Especificidad por Sustrato
3.
J Neurol Neurosurg Psychiatry ; 89(8): 870-878, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29449460

RESUMEN

BACKGROUND: Charcot-Marie-Tooth type 2 (CMT2) neuropathy is characterised by a vast clinical and genetic heterogeneity complicating its diagnosis and therapeutic intervention. Identification of molecular signatures that are common to multiple CMT2 subtypes can aid in developing therapeutic strategies and measuring disease outcomes. METHODS: A proteomics-based approach was performed on lymphoblasts from CMT2 patients genetically diagnosed with different gene mutations to identify differentially regulated proteins. The candidate proteins were validated through real-time quantitative PCR and western blotting on lymphoblast samples of patients and controls, motor neurons differentiated from patient-derived induced pluripotent stem cells (iPSCs) and sciatic nerves of CMT2 mouse models. RESULTS: Proteomic profiling of patient lymphoblasts resulted in the identification of profilin 2 (PFN2) and guanidinoacetate methyltransferase (GAMT) as commonly downregulated proteins in different genotypes compared with healthy controls. This decrease was also observed at the transcriptional level on screening 43 CMT2 patients and 22 controls, respectively. A progressive decrease in PFN2 expression with age was observed in patients, while in healthy controls its expression increased with age. Reduced PFN2 expression was also observed in motor neurons differentiated from CMT2 patient-derived iPSCs and sciatic nerves of CMT2 mice when compared with controls. However, no change in GAMT levels was observed in motor neurons and CMT2 mouse-derived sciatic nerves. CONCLUSIONS: We unveil PFN2 and GAMT as molecular determinants of CMT2 with possible indications of the role of PFN2 in the pathogenesis and disease progression. This is the first study describing biomarkers that can boost the development of therapeutic strategies targeting a wider spectrum of CMT2 patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Genotipo , Guanidinoacetato N-Metiltransferasa/genética , Mutación , Profilinas/genética , Adulto , Anciano , Axones/patología , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Proteómica , Adulto Joven
4.
Brain ; 140(6): 1561-1578, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28459997

RESUMEN

Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal-recessive mutations in POLR3A are a frequent cause of hereditary spastic ataxias, accounting for about 3% of hitherto genetically unclassified autosomal recessive and sporadic cases; and (ii) hypomyelination is frequently absent in POLR3A-related syndromes, especially when intronic mutations are present, and thus can no longer be considered as the unifying feature of POLR3A disease. Furthermore, our results demonstrate that substantial progress in revealing the causes of Mendelian diseases can be made by exploring the non-coding sequences of the human genome.


Asunto(s)
Discapacidad Intelectual/genética , Espasticidad Muscular/genética , Atrofia Óptica/genética , ARN Polimerasa III/genética , Paraplejía Espástica Hereditaria/genética , Ataxias Espinocerebelosas/genética , Anciano , Técnicas de Cultivo de Célula , Exones/genética , Femenino , Estudios de Asociación Genética , Humanos , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/fisiopatología , Intrones/genética , Masculino , Persona de Mediana Edad , Espasticidad Muscular/diagnóstico por imagen , Espasticidad Muscular/fisiopatología , Mutación , Atrofia Óptica/diagnóstico por imagen , Atrofia Óptica/fisiopatología , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/fisiopatología , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/fisiopatología
5.
Ann Neurol ; 80(6): 823-833, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27686364

RESUMEN

OBJECTIVE: To identify the unknown genetic cause in a large pedigree previously classified with a distinct form of axonal Charcot-Marie-Tooth disease type 2G (CMT2G) and to explore its transcriptional consequences. METHODS: Clinical reevaluation of the pedigree was performed, followed by linkage analysis with the redefined disease statuses, and whole genome and exome sequencing. The impact of the mutation was investigated by immunoblotting and transcriptome sequencing. RESULTS: Thirteen affected individuals over 3 generations displayed mild and quiescent lower-limb axonal sensorimotor neuropathy. Magnetic resonance imaging (MRI) of lower-limb musculature systematically showed fatty atrophy in clinical and subclinical mutation carriers. We redefined the disease-linked region to chr9q31.3-q34.2 and subsequently identified a novel missense variant in the E3 ubiquitin-protein ligase LRSAM1 (p.Cys694Tyr). Unlike previous reports, we demonstrated in patients' lymphoblasts that the mutation does not influence overall protein levels of LRSAM1, nor of its ubiquitylation target TSG101. The mutation is associated with several transcriptional changes, including a significant upregulation of another E3 ubiquitin-protein ligase, NEDD4L, and of TNFRSF21, a key regulator of axonal degeneration. INTERPRETATION: Our findings demonstrate that the isolated genetic entity CMT2G is caused by a missense mutation in LRSAM1 and should be reclassified as CMT2P. MRI of lower-limb musculature can be used to detect minimal signs of the disease. Transcriptome analysis of patients' cells highlights novel molecular players associated with LRSAM1 dysfunction, and reveals pathways and therapeutic targets shared with amyotrophic lateral sclerosis and Alzheimer disease. Ann Neurol 2016;80:823-833.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación Missense , Ubiquitina-Proteína Ligasas Nedd4 , Conducción Nerviosa/genética , Conducción Nerviosa/fisiología , Linaje , Regulación hacia Arriba
6.
J Neurol Neurosurg Psychiatry ; 88(11): 941-952, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28860329

RESUMEN

BACKGROUND: Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited neuropathy, a debilitating disease without known cure. Among patients with CMT1A, disease manifestation, progression and severity are strikingly variable, which poses major challenges for the development of new therapies. Hence, there is a strong need for sensitive outcome measures such as disease and progression biomarkers, which would add powerful tools to monitor therapeutic effects in CMT1A. METHODS: We established a pan-European and American consortium comprising nine clinical centres including 311 patients with CMT1A in total. From all patients, the CMT neuropathy score and secondary outcome measures were obtained and a skin biopsy collected. In order to assess and validate disease severity and progression biomarkers, we performed qPCR on a set of 16 animal model-derived potential biomarkers in skin biopsy mRNA extracts. RESULTS: In 266 patients with CMT1A, a cluster of eight cutaneous transcripts differentiates disease severity with a sensitivity and specificity of 90% and 76.1%, respectively. In an additional cohort of 45 patients with CMT1A, from whom a second skin biopsy was taken after 2-3 years, the cutaneous mRNA expression of GSTT2, CTSA, PPARG, CDA, ENPP1 and NRG1-Iis changing over time and correlates with disease progression. CONCLUSIONS: In summary, we provide evidence that cutaneous transcripts in patients with CMT1A serve as disease severity and progression biomarkers and, if implemented into clinical trials, they could markedly accelerate the development of a therapy for CMT1A.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/terapia , Progresión de la Enfermedad , Marcadores Genéticos/genética , Piel/patología , Resultado del Tratamiento , Adulto , Anciano , Biopsia , Catepsina A/genética , Enfermedad de Charcot-Marie-Tooth/sangre , Enfermedad de Charcot-Marie-Tooth/genética , Femenino , Glutatión Transferasa/genética , Glicoproteínas/genética , Humanos , Masculino , Persona de Mediana Edad , Neurregulina-1/genética , Proteínas Nucleares , PPAR gamma/genética , Hidrolasas Diéster Fosfóricas/genética , Pronóstico , Pirofosfatasas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Genética/genética
7.
Brain ; 138(Pt 11): 3238-50, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26384929

RESUMEN

The epileptic encephalopathies are a clinically and aetiologically heterogeneous subgroup of epilepsy syndromes. Most epileptic encephalopathies have a genetic cause and patients are often found to carry a heterozygous de novo mutation in one of the genes associated with the disease entity. Occasionally recessive mutations are identified: a recent publication described a distinct neonatal epileptic encephalopathy (MIM 615905) caused by autosomal recessive mutations in the SLC13A5 gene. Here, we report eight additional patients belonging to four different families with autosomal recessive mutations in SLC13A5. SLC13A5 encodes a high affinity sodium-dependent citrate transporter, which is expressed in the brain. Neurons are considered incapable of de novo synthesis of tricarboxylic acid cycle intermediates; therefore they rely on the uptake of intermediates, such as citrate, to maintain their energy status and neurotransmitter production. The effect of all seven identified mutations (two premature stops and five amino acid substitutions) was studied in vitro, using immunocytochemistry, selective western blot and mass spectrometry. We hereby demonstrate that cells expressing mutant sodium-dependent citrate transporter have a complete loss of citrate uptake due to various cellular loss-of-function mechanisms. In addition, we provide independent proof of the involvement of autosomal recessive SLC13A5 mutations in the development of neonatal epileptic encephalopathies, and highlight teeth hypoplasia as a possible indicator for SLC13A5 screening. All three patients who tried the ketogenic diet responded well to this treatment, and future studies will allow us to ascertain whether this is a recurrent feature in this severe disorder.


Asunto(s)
Anodoncia/genética , Ácido Cítrico/metabolismo , Discapacidades del Desarrollo/genética , Epilepsia/genética , Simportadores/genética , Adolescente , Encefalopatías/genética , Niño , Femenino , Genes Recesivos , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Masculino , Mutación , Linaje , Simportadores/metabolismo
8.
Neurogenetics ; 16(1): 33-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25231362

RESUMEN

Autosomal recessive forms of Charcot-Marie-Tooth disease (ARCMT) are rare but severe disorders of the peripheral nervous system. Their molecular basis is poorly understood due to the extensive genetic and clinical heterogeneity, posing considerable challenges for patients, physicians, and researchers. We report on the genetic findings from a systematic study of a large collection of 174 independent ARCMT families. Initial sequencing of the three most common ARCMT genes (ganglioside-induced differentiation protein 1­GDAP1, SH3 domain and tetratricopeptide repeats-containing protein 2­SH3TC2, histidine-triad nucleotide binding protein 1­HINT1) identified pathogenic mutations in 41 patients. Subsequently, 87 selected nuclear families underwent single nucleotide polymorphism (SNP) genotyping and homozygosity mapping, followed by targeted screening of known ARCMT genes. This strategy provided molecular diagnosis to 22% of the families. Altogether, our unbiased genetic approach identified pathogenic mutations in ten ARCMT genes in a total of 41.3% patients. Apart from a newly described founder mutation in GDAP1, the majority of variants constitute private molecular defects. Since the gene testing was independent of the clinical phenotype of the patients, we identified mutations in patients with unusual or additional clinical features, extending the phenotypic spectrum of the SH3TC2 gene. Our study provides an overview of the ARCMT genetic landscape and proposes guidelines for tackling the genetic heterogeneity of this group of hereditary neuropathies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Mutación , Mapeo Cromosómico , Análisis Mutacional de ADN , Femenino , Genes Recesivos , Homocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas del Tejido Nervioso/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas/genética
9.
Cochrane Database Syst Rev ; (12): CD011952, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26662471

RESUMEN

BACKGROUND: Charcot-Marie-Tooth disease (CMT) comprises a large group of different forms of hereditary motor and sensory neuropathy. The molecular basis of several CMT subtypes has been clarified during the last 20 years. Since slowly progressive muscle weakness and sensory disturbances are the main features of these syndromes, treatments aim to improve motor impairment and sensory disturbances to improve abilities. Pharmacological treatment trials in CMT are rare. This review was derived from a Cochrane review, Treatment for Charcot Marie Tooth disease, which will be updated via this review and a forthcoming title, Treatments other than ascorbic acid for Charcot-Marie-Tooth disease. OBJECTIVES: To assess the effects of ascorbic acid (vitamin C) treatment for CMT. SEARCH METHODS: On 21 September 2015, we searched the Cochrane Neuromuscular Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and LILACS for randomised controlled trials (RCTs) of treatment for CMT. We also checked clinical trials registries for ongoing studies. SELECTION CRITERIA: We included RCTs and quasi-RCTs of any ascorbic acid treatment for people with CMT. Where a study aimed to evaluate the treatment of general neuromuscular symptoms of people with peripheral neuropathy including CMT, we included the study if we were able to identify the effect of treatment in the CMT group. We did not include observational studies or case reports of ascorbic acid treatment in people with CMT. DATA COLLECTION AND ANALYSIS: Two review authors (BG and JB) independently extracted the data and assessed study quality. MAIN RESULTS: Six RCTs compared the effect of oral ascorbic acid (1 to 4 grams) and placebo treatment in CMT1A. In five trials involving adults with CMT1A, a total of 622 participants received ascorbic acid or placebo. Trials were largely at low risk of bias. There is high-quality evidence that ascorbic acid does not improve the course of CMT1A in adults as measured by the CMT neuropathy score (0 to 36 scale) at 12 months (mean difference (MD) -0.37; 95% confidence intervals (CI) -0.83 to 0.09; five studies; N = 533), or at 24 months (MD -0.21; 95% CI -0.81 to 0.39; three studies; N = 388). Ascorbic acid treatment showed a positive effect on the nine-hole peg test versus placebo (MD -1.16 seconds; 95% CI -1.96 to -0.37), but the clinical significance of this result is probably small. Meta-analyses of other secondary outcome parameters showed no relevant benefit of ascorbic acid. In one trial, 80 children with CMT1A received ascorbic acid or placebo. The trial showed no clinical benefit of ascorbic acid treatment. Adverse effects did not differ in their nature or abundance between ascorbic acid and placebo. AUTHORS' CONCLUSIONS: High-quality evidence indicates that ascorbic acid does not improve the course of CMT1A in adults in terms of the outcome parameters used. According to low-quality evidence, ascorbic acid does not improve the course of CMT1A in children. However, CMT1A is slowly progressive and the outcome parameters show only small change over time. Longer study durations should be considered, and outcome parameters more sensitive to change over time should be designed and validated for future studies.


Asunto(s)
Ácido Ascórbico/uso terapéutico , Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Adulto , Enfermedad de Charcot-Marie-Tooth/genética , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
10.
Nat Genet ; 38(2): 197-202, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16429158

RESUMEN

Charcot-Marie-Tooth (CMT) neuropathies are common disorders of the peripheral nervous system caused by demyelination or axonal degeneration, or a combination of both features. We previously assigned the locus for autosomal dominant intermediate CMT neuropathy type C (DI-CMTC) to chromosome 1p34-p35. Here we identify two heterozygous missense mutations (G41R and E196K) and one de novo deletion (153-156delVKQV) in tyrosyl-tRNA synthetase (YARS) in three unrelated families affected with DI-CMTC. Biochemical experiments and genetic complementation in yeast show partial loss of aminoacylation activity of the mutant proteins, and mutations in YARS, or in its yeast ortholog TYS1, reduce yeast growth. YARS localizes to axonal termini in differentiating primary motor neuron and neuroblastoma cultures. This specific distribution is significantly reduced in cells expressing mutant YARS proteins. YARS is the second aminoacyl-tRNA synthetase found to be involved in CMT, thereby linking protein-synthesizing complexes with neurodegeneration.


Asunto(s)
Axones/enzimología , Enfermedad de Charcot-Marie-Tooth/enzimología , Enfermedad de Charcot-Marie-Tooth/genética , Genes Dominantes/genética , Mutación/genética , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Axones/patología , Bioensayo , Células COS , Línea Celular Tumoral , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/metabolismo , Chlorocebus aethiops , Prueba de Complementación Genética , Heterocigoto , Humanos , Ratones , Datos de Secuencia Molecular , Transporte de Proteínas , Proteínas Recombinantes , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Alineación de Secuencia , Tirosina-ARNt Ligasa/química
11.
Curr Opin Neurol ; 27(5): 532-40, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25110935

RESUMEN

PURPOSE OF REVIEW: This article focuses on recent advances in Charcot-Marie-Tooth disease, in particular additions to the genetic spectrum, novel paradigms in molecular techniques and an update on therapeutic strategies. RECENT FINDINGS: Several new Charcot-Marie-Tooth disease-causing genes have been recently identified, further enlarging the genetic diversity and phenotypic variability, including: SBF1, DHTKD1, TFG, MARS, HARS, HINT1, TRIM1, AIFM1, PDK3 and GNB4. The increasing availability and affordability of next-generation sequencing technologies has ramped up gene discovery and drastically changed genetic screening strategies. All large-scale trials studying the effect of ascorbic acid in Charcot-Marie-Tooth 1A have now been completed and were negative. Efforts have been made to design more robust outcome-measures for clinical trials. Promising results with lonaprisan, curcumin and histone deacetylase 6 inhibitors have been obtained in animal models. SUMMARY: Charcot-Marie-Tooth is the most common form of inherited peripheral neuropathy and represents the most prevalent hereditary neuromuscular disorder. The genetic spectrum spans more than 70 genes. Gene discovery has been revolutionized recently by new high-throughput molecular technologies. In addition, the phenotypic diversity has grown tremendously. This is a major challenge for geneticists and neurologists. No effective therapy is available for Charcot-Marie-Tooth. Several large trials with ascorbic acid were negative but research into novel compounds continues.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos
12.
Nat Genet ; 37(3): 289-94, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15731758

RESUMEN

Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of peripheral neuropathies. Different chromosomal loci have been linked with three autosomal dominant, 'intermediate' types of CMT: DI-CMTA, DI-CMTB and DI-CMTC. We refined the locus associated with DI-CMTB on chromosome 19p12-13.2 to 4.2 Mb in three unrelated families with CMT originating from Australia, Belgium and North America. After screening candidate genes, we identified unique mutations in dynamin 2 (DNM2) in all families. DNM2 belongs to the family of large GTPases and is part of the cellular fusion-fission apparatus. In transiently transfected cell lines, mutations of DNM2 substantially diminish binding of DNM2 to membranes by altering the conformation of the beta3/beta4 loop of the pleckstrin homology domain. Additionally, in the Australian and Belgian pedigrees, which carry two different mutations affecting the same amino acid, Lys558, CMT cosegregated with neutropenia, which has not previously been associated with CMT neuropathies.


Asunto(s)
Proteínas Sanguíneas/genética , Enfermedad de Charcot-Marie-Tooth/genética , Dinamina II/genética , Mutación , Fosfoproteínas/genética , Animales , Proteínas Sanguíneas/química , Western Blotting , Línea Celular , Clonación Molecular , ADN Complementario , Dinamina II/química , Genes Dominantes , Humanos , Datos de Secuencia Molecular , Fosfoproteínas/química
13.
Brain Commun ; 6(2): fcae070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495304

RESUMEN

Pathogenic variants in six aminoacyl-tRNA synthetase (ARS) genes are implicated in neurological disorders, most notably inherited peripheral neuropathies. ARSs are enzymes that charge tRNA molecules with cognate amino acids. Pathogenic variants in asparaginyl-tRNA synthetase (NARS1) cause a neurological phenotype combining developmental delay, ataxia and demyelinating peripheral neuropathy. NARS1 has not yet been linked to axonal Charcot-Marie-Tooth disease. Exome sequencing of patients with inherited peripheral neuropathies revealed three previously unreported heterozygous NARS1 variants in three families. Clinical and electrophysiological details were assessed. We further characterized all three variants in a yeast complementation model and used a knock-in mouse model to study variant p.Ser461Phe. All three variants (p.Met236del, p.Cys342Tyr and p.Ser461Phe) co-segregate with the sensorimotor axonal neuropathy phenotype. Yeast complementation assays show that none of the three NARS1 variants support wild-type yeast growth when tested in isolation (i.e. in the absence of a wild-type copy of NARS1), consistent with a loss-of-function effect. Similarly, the homozygous knock-in mouse model (p.Ser461Phe/Ser472Phe in mouse) also demonstrated loss-of-function characteristics. We present three previously unreported NARS1 variants segregating with a sensorimotor neuropathy phenotype in three families. Functional studies in yeast and mouse support variant pathogenicity. Thus, NARS1 is the seventh ARS implicated in dominant axonal Charcot-Marie-Tooth disease, further stressing that all dimeric ARSs should be evaluated for Charcot-Marie-Tooth disease.

14.
Brain Pathol ; 34(1): e13200, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37581289

RESUMEN

Myelin protein zero (MPZ/P0) is a major structural protein of peripheral nerve myelin. Disease-associated variants in the MPZ gene cause a wide phenotypic spectrum of inherited peripheral neuropathies. Previous nerve biopsy studies showed evidence for subtype-specific morphological features. Here, we aimed at enhancing the understanding of these subtype-specific features and pathophysiological aspects of MPZ neuropathies. We examined archival material from two Central European centers and systematically determined genetic, clinical, and neuropathological features of 21 patients with MPZ mutations compared to 16 controls. Cases were grouped based on nerve conduction data into congenital hypomyelinating neuropathy (CHN; n = 2), demyelinating Charcot-Marie-Tooth (CMT type 1; n = 11), intermediate (CMTi; n = 3), and axonal CMT (type 2; n = 5). Six cases had combined muscle and nerve biopsies and one underwent autopsy. We detected four MPZ gene variants not previously described in patients with neuropathy. Light and electron microscopy of nerve biopsies confirmed fewer myelinated fibers, more onion bulbs and reduced regeneration in demyelinating CMT1 compared to CMT2/CMTi. In addition, we observed significantly more denervated Schwann cells, more collagen pockets, fewer unmyelinated axons per Schwann cell unit and a higher density of Schwann cell nuclei in CMT1 compared to CMT2/CMTi. CHN was characterized by basal lamina onion bulb formation, a further increase in Schwann cell density and hypomyelination. Most late onset axonal neuropathy patients showed microangiopathy. In the autopsy case, we observed prominent neuromatous hyperinnervation of the spinal meninges. In four of the six muscle biopsies, we found marked structural mitochondrial abnormalities. These results show that MPZ alterations not only affect myelinated nerve fibers, leading to either primarily demyelinating or axonal changes, but also affect non-myelinated nerve fibers. The autopsy case offers insight into spinal nerve root pathology in MPZ neuropathy. Finally, our data suggest a peculiar association of MPZ mutations with mitochondrial alterations in muscle.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteína P0 de la Mielina , Humanos , Proteína P0 de la Mielina/genética , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Mutación/genética , Proteínas/genética , Biopsia
15.
Am J Hum Genet ; 86(6): 892-903, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20493460

RESUMEN

Genomic rearrangements involving the peripheral myelin protein gene (PMP22) in human chromosome 17p12 are associated with neuropathy: duplications cause Charcot-Marie-Tooth disease type 1A (CMT1A), whereas deletions lead to hereditary neuropathy with liability to pressure palsies (HNPP). Our previous studies showed that >99% of these rearrangements are recurrent and mediated by nonallelic homologous recombination (NAHR). Rare copy number variations (CNVs) generated by nonrecurrent rearrangements also exist in 17p12, but their underlying mechanisms are not well understood. We investigated 21 subjects with rare CNVs associated with CMT1A or HNPP by oligonucleotide-based comparative genomic hybridization microarrays and breakpoint sequence analyses, and we identified 17 unique CNVs, including two genomic deletions, ten genomic duplications, two complex rearrangements, and three small exonic deletions. Each of these CNVs includes either the entire PMP22 gene, or exon(s) only, or ultraconserved potential regulatory sequences upstream of PMP22, further supporting the contention that PMP22 is the critical gene mediating the neuropathy phenotypes associated with 17p12 rearrangements. Breakpoint sequence analysis reveals that, different from the predominant NAHR mechanism in recurrent rearrangement, various molecular mechanisms, including nonhomologous end joining, Alu-Alu-mediated recombination, and replication-based mechanisms (e.g., FoSTeS and/or MMBIR), can generate nonrecurrent 17p12 rearrangements associated with neuropathy. We document a multitude of ways in which gene function can be altered by CNVs. Given the characteristics, including small size, structural complexity, and location outside of coding regions, of selected rare CNVs, their identification remains a challenge for genome analysis. Rare CNVs may potentially represent an important portion of "missing heritability" for human diseases.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Cromosomas Humanos Par 17 , Variaciones en el Número de Copia de ADN , Proteínas de la Mielina/genética , Parálisis/genética , Translocación Genética , Hibridación Genómica Comparativa , Eliminación de Gen , Duplicación de Gen , Neuropatía Hereditaria Motora y Sensorial , Humanos
16.
Nat Genet ; 36(6): 602-6, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15122254

RESUMEN

Charcot-Marie-Tooth disease (CMT) is the most common inherited neuromuscular disease and is characterized by considerable clinical and genetic heterogeneity. We previously reported a Russian family with autosomal dominant axonal CMT and assigned the locus underlying the disease (CMT2F; OMIM 606595) to chromosome 7q11-q21 (ref. 2). Here we report a missense mutation in the gene encoding 27-kDa small heat-shock protein B1 (HSPB1, also called HSP27) that segregates in the family with CMT2F. Screening for mutations in HSPB1 in 301 individuals with CMT and 115 individuals with distal hereditary motor neuropathies (distal HMNs) confirmed the previously observed mutation and identified four additional missense mutations. We observed the additional HSPB1 mutations in four families with distal HMN and in one individual with CMT neuropathy. Four mutations are located in the Hsp20-alpha-crystallin domain, and one mutation is in the C-terminal part of the HSP27 protein. Neuronal cells transfected with mutated HSPB1 were less viable than cells expressing the wild-type protein. Cotransfection of neurofilament light chain (NEFL) and mutant HSPB1 resulted in altered neurofilament assembly in cells devoid of cytoplasmic intermediate filaments.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Choque Térmico/genética , Neuropatía Hereditaria Motora y Sensorial/genética , Mutación Missense , Proteínas de Neoplasias/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , ADN Complementario/genética , Femenino , Proteínas de Choque Térmico HSP27 , Humanos , Masculino , Ratones , Chaperonas Moleculares , Datos de Secuencia Molecular , Degeneración Nerviosa/genética , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Transfección
17.
Hum Mol Genet ; 19(16): 3254-65, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20538880

RESUMEN

Missense mutations (K141N and K141E) in the alpha-crystallin domain of the small heat shock protein HSPB8 (HSP22) cause distal hereditary motor neuropathy (distal HMN) or Charcot-Marie-Tooth neuropathy type 2L (CMT2L). The mechanism through which mutant HSPB8 leads to a specific motor neuron disease phenotype is currently unknown. To address this question, we compared the effect of mutant HSPB8 in primary neuronal and glial cell cultures. In motor neurons, expression of both HSPB8 K141N and K141E mutations clearly resulted in neurite degeneration, as manifested by a reduction in number of neurites per cell, as well as in a reduction in average length of the neurites. Furthermore, expression of the K141E (and to a lesser extent, K141N) mutation also induced spheroids in the neurites. We did not detect any signs of apoptosis in motor neurons, showing that mutant HSPB8 resulted in neurite degeneration without inducing neuronal death. While overt in motor neurons, these phenotypes were only very mildly present in sensory neurons and completely absent in cortical neurons. Also glial cells did not show an altered phenotype upon expression of mutant HSPB8. These findings show that despite the ubiquitous presence of HSPB8, only motor neurons appear to be affected by the K141N and K141E mutations which explain the predominant motor neuron phenotype in distal HMN and CMT2L.


Asunto(s)
Proteínas del Choque Térmico HSP20/metabolismo , Neuronas Motoras/metabolismo , Proteínas Musculares/metabolismo , Mutación , Neuritas/metabolismo , Sustitución de Aminoácidos , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apoptosis , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Daño del ADN , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas del Choque Térmico HSP20/genética , Proteínas de Choque Térmico , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Chaperonas Moleculares , Neuronas Motoras/patología , Proteínas Musculares/genética , Neuritas/patología , Neuroglía/metabolismo , Ratas , Ratas Wistar , Transfección
18.
Brain ; 134(Pt 9): 2664-76, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21840889

RESUMEN

Early onset hereditary motor and sensory neuropathies are rare disorders encompassing congenital hypomyelinating neuropathy with disease onset in the direct post-natal period and Dejerine-Sottas neuropathy starting in infancy. The clinical spectrum, however, reaches beyond the boundaries of these two historically defined disease entities. De novo dominant mutations in PMP22, MPZ and EGR2 are known to be a typical cause of very early onset hereditary neuropathies. In addition, mutations in several other dominant and recessive genes for Charcot-Marie-Tooth disease may lead to similar phenotypes. To estimate mutation frequencies and to gain detailed insights into the genetic and phenotypic heterogeneity of early onset hereditary neuropathies, we selected a heterogeneous cohort of 77 unrelated patients who presented with symptoms of peripheral neuropathy within the first year of life. The majority of these patients were isolated in their family. We performed systematic mutation screening by means of direct sequencing of the coding regions of 11 genes: MFN2, PMP22, MPZ, EGR2, GDAP1, NEFL, FGD4, MTMR2, PRX, SBF2 and SH3TC2. In addition, screening for the Charcot-Marie-Tooth type 1A duplication on chromosome 17p11.2-12 was performed. In 35 patients (45%), mutations were identified. Mutations in MPZ, PMP22 and EGR2 were found most frequently in patients presenting with early hypotonia and breathing difficulties. The recessive genes FGD4, PRX, MTMR2, SBF2, SH3TC2 and GDAP1 were mutated in patients presenting with early foot deformities and variable delay in motor milestones after an uneventful neonatal period. Several patients displaying congenital foot deformities but an otherwise normal early development carried the Charcot-Marie-Tooth type 1A duplication. This study clearly illustrates the genetic heterogeneity underlying hereditary neuropathies with infantile onset.


Asunto(s)
Edad de Inicio , Neuropatía Hereditaria Motora y Sensorial/genética , Adolescente , Adulto , Anciano , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Neuropatía Hereditaria Motora y Sensorial/patología , Neuropatía Hereditaria Motora y Sensorial/fisiopatología , Humanos , Lactante , Persona de Mediana Edad , Mutación , Fenotipo , Adulto Joven
19.
Neurogenetics ; 11(3): 357-66, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20232219

RESUMEN

Over 40 mutations in the GDAP1 gene have been shown to segregate with Charcot-Marie-Tooth disease (CMT). Among these, only two mutations, i.e., S194X and Q163X have been reported in a sufficient number of CMT families to allow for the construction of reliable phenotype-genotype correlations. Both the S194X and Q163X mutations have been shown to segregate with an early-onset and severe neuropathy resulting in loss of ambulance at the beginning of the second decade of life. In this study, we identified the L239F mutation in the GDAP1 gene in one Bulgarian and five Polish families. We hypothesized that the L239F mutation may result from a founder effect in the European population since this mutation has previously been reported in Belgian, Czech, and Polish patients. In fact, we detected a common disease-associated haplotype within the 8q13-q21 region in the Polish, German, Italian, Czech, and Bulgarian CMT families. Like the previously detected "regional" S194X and Q163X mutations, respectively present in Maghreb countries and in patients of Spanish descent, the L239F mutation seems to be the most common GDAP1 pathogenic variant in the Central and Eastern European population. Given the likely presence of a common ancestor harboring the L239F mutation, we decided to compare the phenotypes of the CMT (L239F) patients collected in this study with those of previously reported cases. In contrast to CMT4A caused by the S194X and Q163X mutations, the CMT phenotype resulting from the L239F substitution represents a milder clinical entity with a long-preserved period of ambulance at least until the end of the second decade of life.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Efecto Fundador , Proteínas del Tejido Nervioso/genética , Adolescente , Adulto , Edad de Inicio , Enfermedad de Charcot-Marie-Tooth/patología , Niño , Preescolar , Cromosomas Humanos Par 8/genética , Europa (Continente) , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Mutación , Proteínas/genética , Adulto Joven
20.
Brain ; 132(Pt 10): 2699-711, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19651702

RESUMEN

Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype-phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis.


Asunto(s)
Marcadores Genéticos/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Neuropatías Hereditarias Sensoriales y Autónomas/patología , Adulto , Anciano , Proteínas Portadoras/genética , Chaperonina con TCP-1/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Exones/genética , Femenino , Genotipo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor , Biología Molecular , Paternidad , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Receptor de Factor de Crecimiento Nervioso/genética , Receptor trkA/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina C-Palmitoiltransferasa/genética , Factores de Elongación Transcripcional , Proteína Quinasa Deficiente en Lisina WNK 1 , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA