Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 17(2): 472-487, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31789523

RESUMEN

The colloidal stability, in vitro toxicity, cell association, and in vivo pharmacokinetic behavior of liposomes decorated with monomethoxy-poly(ethylene glycol)-lipids (mPEG-lipids) with different chemical features were comparatively investigated. Structural differences of the mPEG-lipids used in the study included: (a) surface-anchoring moiety [1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), cholesterol (Chol), and cholane (Chln)]; (b) mPEG molecular weight (2 kDa mPEG45 and 5 kDa mPEG114); and (c) mPEG shape (linear and branched PEG). In vitro results demonstrated that branched (mPEG114)2-DSPE confers the highest stealth properties to liposomes (∼31-fold lower cell association than naked liposomes) with respect to all PEGylating agents tested. However, the pharmacokinetic studies showed that the use of cholesterol as anchoring group yields PEGylated liposomes with longer permeance in the circulation and higher systemic bioavailability among the tested formulations. Liposomes decorated with mPEG114-Chol had 3.2- and ∼2.1-fold higher area under curve (AUC) than naked liposomes and branched (mPEG114)2-DSPE-coated liposomes, respectively, which reflects the high stability of this coating agent. By comparing the PEGylating agents with same size, namely, linear 5 kDa PEG derivatives, linear mPEG114-DSPE yielded coated liposomes with the best in vitro stealth performance. Nevertheless, the in vivo AUC of liposomes decorated with linear mPEG114-DSPE was lower than that obtained with liposomes decorated with linear mPEG114-Chol. Computational molecular dynamics modeling provided additional insights that complement the experimental results.


Asunto(s)
Colanos/administración & dosificación , Colesterol/administración & dosificación , Portadores de Fármacos/farmacocinética , Fosfatidiletanolaminas/administración & dosificación , Polietilenglicoles/administración & dosificación , Animales , Disponibilidad Biológica , Colanos/química , Colanos/farmacocinética , Colesterol/química , Colesterol/farmacocinética , Composición de Medicamentos/métodos , Estabilidad de Medicamentos , Células HeLa , Humanos , Lípidos , Liposomas , Ratones , Ratones Endogámicos BALB C , Simulación de Dinámica Molecular , Peso Molecular , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/farmacocinética , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Propiedades de Superficie
2.
Adv Healthc Mater ; 12(29): e2301650, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37590033

RESUMEN

Liposomes play an important role in the field of drug delivery by virtue of their biocompatibility and versatility as carriers. Stealth liposomes, obtained by surface decoration with hydrophilic polyethylene glycol (PEG) molecules, represent an important turning point in liposome technology, leading to significant improvements in the pharmacokinetic profile compared to naked liposomes. Nevertheless, the generation of effective targeted liposomes-a central issue for cancer therapy-has faced several difficulties and clinical phase failures. Active targeting remains a challenge for liposomes. In this direction, a new Super Stealth Immunoliposomes (SSIL2) composed of a PEG-bi-phospholipids derivative is designed that stabilizes the polymer shielding over the liposomes. Furthermore, its counterpart, conjugated to the fragment antigen-binding of trastuzumab (Fab'TRZ -PEG-bi-phospholipids), is firmly anchored on the liposomes surface and correctly orients outward the targeting moiety. Throughout this study, the performances of SSIL2 are evaluated and compared to classic stealth liposomes and stealth immunoliposomes in vitro in a panel of cell lines and in vivo studies in zebrafish larvae and rodent models. Overall, SSIL2 shows superior in vitro and in vivo outcomes, both in terms of safety and anticancer efficacy, thus representing a step forward in targeted cancer therapy, and valuable for future development.


Asunto(s)
Liposomas , Neoplasias , Animales , Liposomas/química , Pez Cebra , Sistemas de Liberación de Medicamentos , Fosfolípidos , Polietilenglicoles/química
3.
J Control Release ; 340: 318-330, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34748872

RESUMEN

Tyrosine kinase inhibitors (TKIs) represent one of the most advanced class of therapeutics for cancer treatment. Most of them are also cytochrome P450 (CYP) inhibitors and/or substrates thereof. Accordingly, their efficacy and/or toxicity can be affected by CYP-mediated metabolism and by metabolism-derived drug-drug interactions. In order to enhance the therapeutic performance of these drugs, we developed a prodrug (Pro962) of our TKI TK962 specifically designed for liposome loading and pH-controlled release in the tumor. A cholesterol moiety was linked to TK962 through pH-sensitive hydrazone bond for anchoring to the liposome phospholipid bilayer to prevent leakage of the prodrug from the nanocarrier. Bioactivity studies performed on isolated target kinases showed that the prodrug maintains only partial activity against them and the release of TK962 is required. Biopharmaceutical studies carried out with prodrug loaded liposomes showed that the prodrug was firmly associated with the vesicles and the drug release was prevented under blood-mimicking conditions. Conversely, conventional liposome loaded with TK962 readily released the drug. Flow cytometric studies showed that liposomes efficiently provided for intracellular prodrug delivery. The use of the hydrazone linker yielded a pH-controlled drug release, which resulted in about 50% drug release at pH 4 and 5 in 2 h. Prodrug, prodrug loaded liposomes and active lead compound have been tested against cancer cell lines in either 2D or 3D models. The liposome formulation showed higher cytotoxicity than the unformulated lead TK962 in both 2D and 3D models. The stability of prodrug, prodrug loaded liposomes and active lead compound in human serum and against human, mouse, and rat microsomes was also assessed, demonstrating that liposome formulations impair the metabolic reactions and protect the loaded compounds from catabolism. The results suggest that the liposomal formulation of pH releasable TKI prodrugs is a promising strategy to improve the metabolic stability, intracellular cancer cell delivery and release, and in turn the efficacy of this class of anticancer drugs.


Asunto(s)
Profármacos , Animales , Preparaciones de Acción Retardada , Liposomas , Ratones , Inhibidores de Proteínas Quinasas , Ratas , Microambiente Tumoral
4.
Cancer Lett ; 499: 220-231, 2021 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-33249196

RESUMEN

Aberrant activation of the Hedgehog (Hh) pathway leads to the development of several tumors, including medulloblastoma (MB), the most common pediatric brain malignancy. Hh inhibitors acting on GLI1, the final effector of Hh signaling, offer a valuable opportunity to overcome the pitfalls of the existing therapies to treat Hh-driven cancers. In this study, the toxicity, delivery, biodistribution, and anticancer efficacy of Glabrescione B (GlaB), a selective GLI1 inhibitor, were investigated in preclinical models of Hh-dependent MB. To overcome its poor water solubility, GlaB was formulated with a self-assembling amphiphilic polymer forming micelles, called mPEG5kDa-cholane. mPEG5kDa-cholane/GlaB showed high drug loading and stability, low cytotoxicity, and long permanence in the bloodstream. We found that mPEG5kDa-cholane efficiently enhanced the solubility of GlaB, thus avoiding the use of organic solvents. mPEG5kDa-cholane/GlaB possesses favorable pharmacokinetics and negligible toxicity. Remarkably, GlaB encapsulated in mPEG5kDa-cholane micelles was delivered through the blood-brain barrier and drastically inhibited tumor growth in both allograft and orthotopic models of Hh-dependent MB. Our findings reveal that mPEG5kDa-cholane/GlaB is a good candidate for the treatment of Hh-driven tumors and provide relevant implications for the translation of GlaB into clinical practice.


Asunto(s)
Neoplasias Cerebelosas/tratamiento farmacológico , Cromonas/administración & dosificación , Portadores de Fármacos/química , Proteínas Hedgehog/antagonistas & inhibidores , Meduloblastoma/tratamiento farmacológico , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Barrera Hematoencefálica/metabolismo , Línea Celular Tumoral , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Colanos/química , Cromonas/farmacocinética , Modelos Animales de Enfermedad , Composición de Medicamentos/métodos , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Ratones Transgénicos , Micelas , Polietilenglicoles/química , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA