Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Clin Oral Investig ; 21(1): 369-379, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27020910

RESUMEN

OBJECTIVES: This study investigated the antibacterial properties and micro-hardness of polyacrylic acid (PAA)-coated copper iodide (CuI) nanoparticles incorporated into glass ionomer-based materials, and the effect of PAA-CuI on collagen degradation. MATERIALS AND METHODS: PAA-CuI nanoparticles were incorporated into glass ionomer (GI), Ionofil Molar AC, and resin-modified glass ionomer (RMGI), Vitrebond, at 0.263 wt%. The antibacterial properties against Streptococcus mutans (n = 6/group) and surface micro-hardness (n = 5/group) were evaluated. Twenty dentin beams were completely demineralized in 10 wt% phosphoric acid and equally divided in two groups (n = 10/group) for incubation in simulated body fluid (SBF) or SBF containing 1 mg/ml PAA-CuI. The amount of dry mass loss and hydroxyproline (HYP) released were quantified. Kruskal-Wallis, Student's t test, two-way ANOVA, and Mann-Whitney were used to analyze the antibacterial, micro-hardness, dry mass, and HYP release data, respectively (p < 0.05). RESULTS: Addition of PAA-CuI nanoparticles into the glass ionomer matrix yielded significant reduction (99.999 %) in the concentration of bacteria relative to the control groups. While micro-hardness values of PAA-CuI-doped GI were no different from its control, PAA-CuI-doped RMGI demonstrated significantly higher values than its control. A significant decrease in dry mass weight was shown only for the control beams (10.53 %, p = 0.04). Significantly less HYP was released from beams incubated in PAA-CuI relative to the control beams (p < 0.001). CONCLUSIONS: PAA-CuI nanoparticles are an effective additive to glass ionomer-based materials as they greatly enhance their antibacterial properties and reduce collagen degradation without an adverse effect on their mechanical properties. CLINICAL RELEVANCE: The use of copper-doped glass ionomer-based materials under composite restorations may contribute to an increased longevity of adhesive restorations, because of their enhanced antibacterial properties and reduced collagen degradation.


Asunto(s)
Resinas Acrílicas/farmacología , Antibacterianos/farmacología , Colágeno/efectos de los fármacos , Cobre/farmacología , Cementos de Ionómero Vítreo/farmacología , Yoduros/farmacología , Streptococcus mutans/efectos de los fármacos , Adolescente , Dentina/efectos de los fármacos , Dureza , Humanos , Técnicas In Vitro , Ensayo de Materiales , Microscopía Electrónica , Diente Molar , Nanopartículas , Tamaño de la Partícula , Propiedades de Superficie , Adulto Joven
2.
J Dent ; 141: 104780, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37981046

RESUMEN

OBJECTIVES: To validate the virtual-fit alignment, analyze the impact of cement spacing on internal/marginal gaps, and correlate results with conventional trueness measures. METHODS: Four dental abutment models were scanned using an industrial reference scanner (one time each), Emerald S (three times each), and Medit i700 (three times each) intraoral scanners (IOS). On each IOS scan (n = 24), three complete-arch fixed frameworks were designed with 70 or 140 µm cement space with no marginal space (groups 70 and 140) and 70 µm with an additional 20 µm space, including the margin (group 70+20). Two types of alignment were performed by GOM Inspect software. The reference and IOS scans were aligned through a conventional iterative closest point algorithm (ICP) where the penetration of the two scans was permitted into each other (conventional trueness method). Second, the computer-aided designs were superimposed with the reference scan also using an ICP, but preventing the design from virtual penetration into the model (virtual-fit method). The virtual-fit algorithm was validated by non-penetration alignment of the designs with the IOS scans. Internal and marginal gap was measured between the design and the abutments. The difference between spacing groups was compared by Friedman's test. A statistical correlation (Spearman's Rho Test) was computed between the measured gaps and the conventional trueness method. A significant difference was accepted at p<0.05 after the Bonferroni correction. RESULTS: The gaps deviated from the set cement space by 3-13 µm on IOS scans (validation of virtual-fit algorithm). The internal gap of the design on the reference scan was not affected by cement spacing (Emerald S, p = 0.779; Medit i700, p = 0.205). The marginal gap in groups 70 and 70+20 was significantly lower than in group 140 in Emerald S (p<0.05). In Medit i700, it was lower in the 70+20 group than in the group 70 (p<0.01) and in the group 140 (p<0.05). Some Medit i700 scans exhibited high marginal gaps within group 70 but not in groups 70 and 140. The measured gaps correlated significantly (r = 0.51-0.81, p<0.05-0.001) with the conventional trueness but were 2.6-4.6 times higher (p<0.001). CONCLUSION: Virtual-fit alignment can simulate restoration seating. A 20 µm marginal and 90 µm internal spacing could compensate for scan errors up to several hundred micrometers. However, 140 µm internal spacing is counterproductive. The conventional trueness method could only partially predict framework misfit. CLINICAL SIGNIFICANCE: The virtual-fit method can provide clinically interpretable data for intraoral scanners. Emerald S and Medit i700 intraoral scanners are suitable for fabricating complete-arch fixed tooth-supported prostheses. In addition, a slight elevation of spacing at the margin could compensate for moderate inaccuracies in a scan.


Asunto(s)
Técnica de Impresión Dental , Imagenología Tridimensional , Modelos Dentales , Cementos Dentales , Cementos de Ionómero Vítreo , Diseño Asistido por Computadora
3.
J Dent ; 129: 104391, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36549570

RESUMEN

OBJECTIVES: The study aimed to compare the precision of ATOS industrial, 3ShapeE4, MeditT710, CeramillMap400, CSNeo, PlanScanLab desktop, and Mediti700 intraoral scanners. The second aim was to compare the trueness of Mediti700 assessed by ATOS and desktop scanners. METHODS: Four plastic dentate models with 7-12 abutments prepared for complete arch fixed dentures were scanned by all scanners three times. Scans were segmented to retain only the abutments. The precision and trueness were calculated by superimposing scans with the best-fit algorithm. The mean absolute distance was calculated between the scan surfaces. The precision was calculated based on the 12 repeats. Trueness was evaluated by superimposing the desktop and IOS scans to the industrial scans. IOS was also aligned with the two most accurate desktop scanners. RESULTS: The precision of 3ShapeE4 and MeditT710 (3-4µm) was only slightly lower than that of ATOS (1.7µm, p<0.001) and significantly higher than CeramillMap400, CSNeo, and PlanScanLab (6-10 µm, p<0.001). The trueness was the highest for the 3Shape E4 (12-13 µm) and Medit T710 (13-16 µm) without significant difference. They were significantly better than CeramillMap400, CSNeo, and PlanScanLab (22-31µm, p<0.001). Accordingly, the Mediti700 trueness was evaluated by ATOS, 3ShapeE4, and MeditT710. The three trueness was not significantly different; ATOS (23-26 µm), 3Shape E4 (22-25 µm), and Medit T710 (20-23 µm). CONCLUSIONS: All desktop scanners had the acceptable accuracy required for a complete arch-fixed prosthesis. The 3Shape E4 and the Medit T710 might be used as reference scanners for studying IOS accuracy. CLINICAL SIGNIFICANCE: 3ShapeE4, MeditT710, CeramillMap400, CSNeo, PlanScanLab laboratory, and Mediti700 intraoral scanners can be used for the prosthetic workflow in a complete arch. 3ShapeE4 and the MeditT710 could be used to test the accuracy of various phases of a laboratory workflow, replacing the industrial scanners.


Asunto(s)
Diseño Asistido por Computadora , Técnica de Impresión Dental , Imagenología Tridimensional , Modelos Dentales , Dentadura Completa , Arco Dental
4.
J Prosthet Dent ; 108(5): 310-5, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23107239

RESUMEN

STATEMENT OF PROBLEM: Confusion exists as to what constitutes an ideal ceramic crown preparation and whether certain deviations from the ideal can affect the marginal fit of the milled restoration. PURPOSE: This study evaluated the marginal gap of E4D crowns fabricated on preparations completed by clinicians with varying levels of expertise to identify whether common errors affect marginal fit. MATERIAL AND METHODS: The fit of 75 crowns fabricated with the E4D system on preparations of varying quality were examined for marginal fit by using the replica technique. These same preparations were then visually examined for common criteria for ceramic restorations and placed in one of 3 categories: excellent, fair, or poor. These visual examinations sought the presence of common preparation errors, particularly those involving the finish line. The average marginal gap values and standard deviations were calculated for each category, and the Kruskal-Wallis test was used to determine significance. RESULTS: The results showed a statistically significant correlation between the marginal fit of a CAD/CAM fabricated crown and the quality of the preparation. The mean marginal gap of the crowns fabricated on ideal preparations was 38.5 µm, those considered fair had a mean marginal gap of 58.3 µm, while those categorized as poor averaged 90.1 µm. The fit differences among all 3 groups were statistically significant (P<.05). CONCLUSIONS: Within the limitations of this in vitro study, it can be concluded that preparation quality has a significant impact on marginal gap on crowns fabricated with a CAD/CAM system.


Asunto(s)
Diseño Asistido por Computadora , Coronas , Adaptación Marginal Dental , Porcelana Dental , Diseño de Prótesis Dental , Preparación Protodóncica del Diente/métodos , Humanos , Técnicas de Réplica , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA