Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Small ; 11(43): 5790-9, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26395346

RESUMEN

Liposomes represent a leading class of nanoparticles for drug delivery. While a variety of techniques for liposome synthesis have been reported that take advantage of microfluidic flow elements to achieve precise control over the size and polydispersity of nanoscale liposomes, with important implications for nanomedicine applications, these methods suffer from extremely limited throughput, making them impractical for large-scale nanoparticle synthesis. High aspect ratio microfluidic vertical flow focusing is investigated here as a new approach to overcoming the throughput limits of established microfluidic nanoparticle synthesis techniques. Here the vertical flow focusing technique is utilized to generate populations of small, unilamellar, and nearly monodisperse liposomal nanoparticles with exceptionally high production rates and remarkable sample homogeneity. By leveraging this platform, liposomes with modal diameters ranging from 80 to 200 nm are prepared at production rates as high as 1.6 mg min(-1) in a simple flow-through process.


Asunto(s)
Dispositivos Laboratorio en un Chip , Liposomas/síntesis química , Liposomas/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Nanotecnología/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Tamaño de la Partícula , Reología/instrumentación
2.
Pharm Res ; 31(2): 401-13, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24092051

RESUMEN

PURPOSE: This study investigates the cellular uptake and trafficking of liposomes in Caco-2 cells, using vesicles with distinct average diameters ranging from 40.6 nm to 276.6 nm. Liposomes were prepared by microfluidic hydrodynamic flow focusing, producing nearly-monodisperse populations and enabling size-dependent uptake to be effectively evaluated. METHODS: Populations of PEG-conjugated liposomes of various distinct sizes were prepared in a disposable microfluidic device using a simple continuous-flow microfluidic technique. Liposome cellular uptake was investigated using flow cytometry and confocal microscopy. RESULTS: Liposome uptake by Caco-2 cells was observed to be strongly size-dependent for liposomes with mean diameters ranging from 40.6 nm to 276.6 nm. When testing these liposomes against endocytosis inhibitors, cellular uptake of the largest (97.8 nm and 162.1 nm in diameter) liposomes were predominantly subjected to clathrin-dependent uptake mechanisms, the medium-sized (72.3 nm in diameter) liposomes seemed to be influenced by all investigated pathways and the smallest liposomes (40.6 nm in diameter) primarily followed a dynamin-dependent pathway. In addition, the 40.6 nm, 72.3 nm, and 162.1 nm diameter liposomes showed slightly decreased accumulation within endosomes after 1 h compared to liposomes which were 97.8 nm in diameter. Conversely, liposome co-localization with lysosomes was consistent for liposomes ranging from 40.6 nm to 97.8 nm in diameter. CONCLUSIONS: The continuous-flow synthesis of nearly-monodisperse populations of liposomes of distinct size via a microfluidic hydrodynamic flow focusing technique enabled unique in vitro studies in which specific effects of particle size on cellular uptake were elucidated. The results of this study highlight the significant influence of liposome size on cellular uptake mechanisms and may be further exploited for increasing specificity, improving efficacy, and reducing toxicity of liposomal drug delivery systems.


Asunto(s)
Liposomas/química , Liposomas/metabolismo , Células CACO-2 , Línea Celular Tumoral , Clatrina/química , Clatrina/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Dinaminas/química , Dinaminas/metabolismo , Endocitosis/fisiología , Humanos , Microfluídica/métodos , Tamaño de la Partícula , Polietilenglicoles/química , Polietilenglicoles/metabolismo
3.
Lab Chip ; 24(5): 1154-1174, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38165786

RESUMEN

Microfluidic technologies are revolutionizing the synthesis of nanoscale lipid particles and enabling new opportunities for the production of lipid-based nanomedicines. By harnessing the benefits of microfluidics for controlling diffusive and advective transport within microfabricated flow cells, microfluidic platforms enable unique capabilities for lipid nanoparticle synthesis with precise and tunable control over nanoparticle properties. Here we present an assessment of the current state of microfluidic technologies for lipid-based nanoparticle and nanomedicine production. Microfluidic techniques are discussed in the context of conventional production methods, with an emphasis on the capabilities of microfluidic systems for controlling nanoparticle size and size distribution. Challenges and opportunities associated with the scaling of manufacturing throughput are discussed, together with an overview of emerging microfluidic methods for lipid nanomedicine post-processing. The impact of additive manufacturing on current and future microfluidic platforms is also considered.


Asunto(s)
Microfluídica , Nanopartículas , Microfluídica/métodos , Liposomas , Sistemas de Liberación de Medicamentos , Lípidos
4.
Pharm Res ; 30(6): 1597-607, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23386106

RESUMEN

PURPOSE: A microfluidic hydrodynamic flow focusing technique enabling the formation of small and nearly monodisperse liposomes is investigated for continuous-flow synthesis of poly(ethylene glycol) (PEG)-modified and PEG-folate-functionalized liposomes for targeted drug delivery. METHODS: Controlled laminar flow in thermoplastic microfluidic devices facilitated liposome self-assembly from initial lipid compositions including lipid/cholesterol mixtures containing PEG-lipid and folate-PEG-lipid conjugates. Relationships among flow conditions, lipid composition, and liposome size were evaluated; their impact on PEG and folate incorporation were determined through a combination of UV-vis absorbance measurements and characterization of liposome zeta potential. RESULTS: PEG and folate were successfully incorporated into microfluidic-synthesized liposomes over the full range of liposome sizes studied. Efficiency of PEG-lipid incorporation was inversely correlated with liposome diameter. Folate-lipid was effectively integrated into liposomes at various flow conditions. CONCLUSIONS: Liposomes incorporating relatively large PEG-modified and folate-PEG-modified lipids were successfully synthesized using the microfluidic flow focusing platform, providing a simple, low cost, rapid method for preparing functionalized liposomes. Relationships between preparation conditions and PEG or folate-PEG functionalization have been elucidated, providing insight into the process and defining paths for optimization of the microfluidic method toward the formation of functionalized liposomes for pharmaceutical applications.


Asunto(s)
Portadores de Fármacos/química , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Liposomas/química , Microfluídica/métodos , Nanopartículas/química , Polietilenglicoles/química , Colesterol/química , Sistemas de Liberación de Medicamentos/métodos , Lípidos/química , Técnicas Analíticas Microfluídicas/métodos , Tamaño de la Partícula
5.
Methods Mol Biol ; 2622: 87-93, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781752

RESUMEN

Microfluidic flow focusing provides an efficient approach to the generation of nanoscale lipid vesicles of tunable size and low size variance. Scalable nanoliposome synthesis over a wide range of production rates can be readily achieved using a high aspect ratio flow focusing device fabricated by widely available additive manufacturing methods. Here we detail methods for the manufacture and operation of a 3D-printed microfluidic flow focusing technology enabling the synthesis of liposomes with modal diameters ranging from ca. 50-200 nm at production rates up to several hundred milligrams lipid per hour.


Asunto(s)
Liposomas , Microfluídica , Microfluídica/métodos , Lípidos
6.
Langmuir ; 28(35): 12923-9, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22900539

RESUMEN

A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of micrometers, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication.


Asunto(s)
Microtecnología/métodos , Polímeros/química , Solventes/química , Alquenos/química , Ozono/química , Impresión , Propiedades de Superficie , Rayos Ultravioleta
7.
Nat Commun ; 13(1): 6997, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384946

RESUMEN

Control over vesicle size during nanoscale liposome synthesis is critical for defining the pharmaceutical properties of liposomal nanomedicines. Microfluidic technologies capable of size-tunable liposome generation have been widely explored, but scaling these microfluidic platforms for high production throughput without sacrificing size control has proven challenging. Here we describe a microfluidic-enabled process in which highly vortical flow is established around an axisymmetric stream of solvated lipids, simultaneously focusing the lipids while inducing rapid convective and diffusive mixing through application of the vortical flow field. By adjusting the individual buffer and lipid flow rates within the system, the microfluidic vortex focusing technique is capable of generating liposomes with precisely controlled size and low size variance, and may be operated up to the laminar flow limit for high throughput vesicle production. The reliable formation of liposomes as small as 27 nm and mass production rates over 20 g/h is demonstrated, offering a path toward production-scale liposome synthesis using a single continuous-flow vortex focusing device.


Asunto(s)
Liposomas , Microfluídica , Microfluídica/métodos , Difusión , Lípidos
8.
Anal Chem ; 83(6): 2119-24, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21322579

RESUMEN

The use of porous polymer monoliths functionalized with silver nanoparticles is introduced in this work for high-sensitivity surface-enhanced Raman scattering (SERS) detection. Preparation of the SERS detection elements is a simple process comprising the synthesis of a discrete polymer monolith section within a silica capillary, followed by physically trapping silver nanoparticle aggregates within the monolith matrix. A SERS detection limit of 220 fmol for Rhodamine 6G is demonstrated, with excellent signal stability over a 24 h period. The capability of the SERS-active monolith for label-free detection of biomolecules was demonstrated by measurements of bradykinin and cytochrome c. The SERS-active monoliths can be readily integrated into miniaturized micrototal-analysis systems for online and label-free detection for a variety of biosensing, bioanalytical, and biomedical applications.


Asunto(s)
Nanopartículas del Metal/química , Polímeros/análisis , Polímeros/química , Espectrometría Raman/métodos , Bradiquinina/análisis , Bradiquinina/química , Citocromos c/análisis , Citocromos c/química , Polimerizacion/efectos de la radiación , Porosidad , Dióxido de Silicio/química , Plata/química , Propiedades de Superficie , Rayos Ultravioleta
9.
Small ; 7(17): 2470-6, 2011 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-21710485

RESUMEN

An in situ microfluidic assembly approach is described that can both produce microsized building blocks and assemble them into complex multiparticle configurations in the same microfluidic device. The building blocks are microparticles of the biopolymer chitosan, which is intentionally selected because its chemistry allows for simultaneous intraparticle and interparticle linking. Monodisperse chitosan-bearing droplets are created by shearing off a chitosan solution at a microfluidic T-junction with a stream of hexadecane containing a nonionic detergent. These droplets are then interfacially crosslinked into stable microparticles by a downstream flow of glutaraldehyde (GA). The functional properties of these robust microparticles can be easily varied by introducing various payloads, such as magnetic nanoparticles and/or fluorescent dyes, into the chitosan solution. The on-chip connection of such individual particles into well-defined microchains is demonstrated using GA again as the chemical "glue" and microchannel confinement as the spatial template. Chain flexibility can be tuned by adjusting the crosslinking conditions: both rigid chains and semiflexible chains are created. Additionally, the arrangement of particles within a chain can also be controlled, for example, to generate chains with alternating fluorescent and nonfluorescent microparticles. Such microassembled chains could find applications as microfluidic mixers, delivery vehicles, microscale sensors, or miniature biomimetic robots.


Asunto(s)
Quitosano , Técnicas Analíticas Microfluídicas , Microtecnología , Materiales Biomiméticos , Biopolímeros , Técnicas Biosensibles , Colorantes Fluorescentes , Glutaral , Fenómenos Magnéticos , Nanopartículas de Magnetita , Microfluídica , Tamaño de la Partícula
10.
Ann Biomed Eng ; 49(1): 139-148, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32367467

RESUMEN

A thermoplastic microfluidic substrate is conformally integrated onto the cylindrical barrel of a conventional venipuncture syringe, forming a spiral inertial separation element supporting the isolation of plasma from diluted whole blood. The cylindrical shape of the syringe itself serves to define the flow path required for inertial separation by transforming a linear microchannel to a spiral topology. The hybrid system enables inertial plasma separation by Dean flow focusing within the same syringe used for a patient blood draw, with the seamlessly interconnected microfluidic element operated by automated or manual actuation of the syringe plunger. Plasma isolation is achieved without the need for external instrumentation. Device design and fabrication challenges are discussed, and effective plasma isolation within the system is demonstrated, with a peak separation efficiency above 97% using 25 × diluted blood.


Asunto(s)
Separación Celular/instrumentación , Microfluídica , Plasma , Jeringas , Cicloparafinas , Diseño de Equipo , Humanos , Polímeros
11.
Lab Chip ; 9(4): 592-9, 2009 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-19190795

RESUMEN

A two-dimensional microfluidic system is presented for intact protein separations combining isoelectric focusing (IEF) and sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) employing in situ photopolymerized polyacrylamide (PAAm) gels. The PAAm gels are used for multiple functions. In addition to serving as a highly-resolving separation medium for gel electrophoresis, discrete polyacrylamide gel plugs are used to enable the efficient isolation of different on-chip media including anolyte, catholyte, and sample/ampholyte solutions for IEF. The gel plugs are demonstrated as on-chip reagent containers, holding defined quantities of SDS for on-chip SDS-protein complexation, and enabling the use of a discontinuous buffer system for sample band sharpening during SDS-PAGE. The 2-D chip also employs several unique design features including an angled isoelectric focusing channel to minimize sample tailing, and backbiasing channels designed to achieve uniform interdimensional sample transfer. Separation results using E. coli cell lysate are presented using a 10-channel chip with and without the discontinuous buffer system, with resolving power more than doubled in the former case. Further improvements in separation resolution are demonstrated using a 20-channel chip design.


Asunto(s)
Electroforesis por Microchip/instrumentación , Electroforesis en Gel de Poliacrilamida/instrumentación , Focalización Isoeléctrica/instrumentación , Proteínas/análisis , Resinas Acrílicas/química , Tampones (Química) , Electroforesis en Gel Bidimensional/instrumentación , Diseño de Equipo , Escherichia coli , Reproducibilidad de los Resultados
12.
Lab Chip ; 9(24): 3511-6, 2009 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-20024030

RESUMEN

A facile method enabling the integration of elastomeric valves into rigid thermoplastic microfluidic chips is described. The valves employ discrete plugs of elastomeric polydimethylsiloxane (PDMS) integrated into the thermoplastic substrate and actuated using a threaded stainless steel needle. The fabrication process takes advantage of poly(ethylene glycol) (PEG) as a sacrificial molding material to isolate the PDMS regions from the thermoplastic flow channels, while yielding smooth contact surfaces with the PDMS valve seats. The valves introduce minimal dead volumes, and provide a simple mechanical means to achieve reproducible proportional valving within thermoplastic microfluidic systems. Burst pressure tests reveal that the valves can withstand pressures above 12 MPa over repeated open/close cycles without leakage, and above 24 MPa during a single use, making the technology well suited for applications such as high performance liquid chromatography. Proportional valve operation is demonstrated using a multi-valve chemical gradient generator fabricated in cyclic olefin polymer.


Asunto(s)
Fenómenos Mecánicos , Técnicas Analíticas Microfluídicas/instrumentación , Polímeros/química , Presión , Temperatura , Alquenos/química , Dimetilpolisiloxanos/química , Gases/química , Microtecnología , Permeabilidad , Polietilenglicoles/química , Solventes/química , Propiedades de Superficie
13.
Anal Chem ; 81(7): 2545-54, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19267447

RESUMEN

Polymer microfluidic chips employing in situ photopolymerized polymethacrylate monoliths for high-performance liquid chromatography separations of peptides is described. The integrated chip design employs a 15 cm long separation column containing a reversed-phase polymethacrylate monolith as a stationary phase, with its front end seamlessly coupled to a 5 mm long methacrylate monolith which functions as a solid-phase extraction (SPE) element for sample cleanup and enrichment, serving to increase both detection sensitivity and separation performance. In addition to sample concentration and separation, solvent splitting is also performed on-chip, allowing the use of a conventional LC pump for the generation of on-chip nanoflow solvent gradients. The integrated platform takes advantage of solvent bonding and a novel high-pressure needle interface which together enable the polymer chips to withstand internal pressures above 20 MPa (approximately 2900 psi) for efficient pressure-driven HPLC separations. Gradient reversed-phase separation of fluorescein-labeled model peptides and BSA tryptic digest are demonstrated using the microchip HPLC system. Online removal of free fluorescein and enrichment of labeled proteins are simultaneously achieved using the on-chip SPE column, resulting in a 150-fold improvement in sensitivity and a 10-fold reduction in peak width in the following microchip gradient LC separation.


Asunto(s)
Cromatografía Líquida de Alta Presión/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Péptidos/aislamiento & purificación , Ácidos Polimetacrílicos/química , Extracción en Fase Sólida/instrumentación , Animales , Bovinos , Fluoresceína-5-Isotiocianato/química , Inyecciones , Péptidos/química , Péptidos/metabolismo , Presión , Reproducibilidad de los Resultados , Coloración y Etiquetado , Tripsina/metabolismo
14.
Lab Chip ; 8(4): 602-8, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18369516

RESUMEN

The measurement of single poly(ethylene glycol) (PEG) molecules interacting with individual bilayer lipid membrane-bound ion channels is presented. Measurements were performed within a polymer microfluidic system including an open-well bilayer lipid membrane formation site, integrated Ag/AgCl reference electrodes for on-chip electrical measurements, and multiple microchannels for independent ion channel and analyte delivery. Details of chip fabrication, bilayer membrane formation, and alpha-hemolysin ion channel incorporation are discussed, and measurements of interactions between the membrane-bound ion channels and single PEG molecules are presented.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas Hemolisinas/análisis , Canales Iónicos/química , Membrana Dobles de Lípidos/química , Técnicas Analíticas Microfluídicas/métodos , Polietilenglicoles/análisis , Toxinas Bacterianas , Técnicas Biosensibles/instrumentación , Electroquímica , Electrodos , Proteínas Hemolisinas/metabolismo , Técnicas Analíticas Microfluídicas/instrumentación , Polietilenglicoles/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Plata/química , Compuestos de Plata/química
15.
Lab Chip ; 5(4): 392-400, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15791336

RESUMEN

An integrated two-dimensional (2-D) DNA separation platform, combining standard gel electrophoresis with temperature gradient gel electrophoresis (TGGE) on a polymer microfluidic chip, is reported. Rather than sequentially sampling DNA fragments eluted from standard gel electrophoresis, size-resolved fragments are simultaneously electrokinetically transferred into an array of orthogonal microchannels and screened for the presence of sequence heterogeneity by TGGE in a parallel and high throughput format. A bulk heater assembly is designed and employed to externally generate a temporal temperature gradient along an array of TGGE channels. Extensive finite element modeling is performed to determine the optimal geometries of the microfluidic network for minimizing analyte band dispersion caused by interconnected channels in the network. A pH-mediated on-chip analyte stacking strategy is employed prior to the parallel TGGE separations to further reduce additional band broadening acquired during the electrokinetic transfer of DNA fragments between the first and second separation dimensions. A comprehensive 2-D DNA separation is completed in less than 5 min for positive detection of single-nucleotide polymorphisms in multiplex PCR products that vary in size and sequence.


Asunto(s)
Análisis Mutacional de ADN/métodos , Electroforesis en Gel Bidimensional/métodos , Pruebas Genéticas , Microfluídica/métodos , Polímeros/química , ADN/química , Análisis Mutacional de ADN/instrumentación , Electroforesis en Gel Bidimensional/instrumentación , Análisis de Elementos Finitos , Concentración de Iones de Hidrógeno , Microfluídica/instrumentación , Modelos Teóricos , Mutación Puntual , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad , Temperatura , Factores de Tiempo
16.
Lab Chip ; 4(4): 363-7, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15269805

RESUMEN

A simple process for realizing stable and reliable electrospray ionization (ESI) tips in polymer microfluidic systems is described. The process is based on the addition of a thin hydrophobic membrane at the microchannel exit to constrain lateral dispersion of the Taylor cone formed during ESI. Using this approach, ESI chips are shown to exhibit well-defined Taylor cones at flow rates as low as 80 nL min(-1) through optical imaging. Furthermore, stable electrospray current has been measured for flow rates as low as 10 nL min(-1) over several hours of continuous operation. Characterization of the electrospray process by optical and electrical monitoring of fabricated ESI chips is reported, together with mass spectrometry validation using myoglobin as a model protein. The novel process offers the potential for low-cost, direct interfacing of disposable polymer microfluidic separation platforms to mass spectrometry.


Asunto(s)
Proteínas de la Membrana/química , Microfluídica/métodos , Polímeros/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Microfluídica/instrumentación , Mioglobina/química , Espectrometría de Masa por Ionización de Electrospray/instrumentación
17.
Lab Chip ; 14(14): 2403-9, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24825622

RESUMEN

A novel microscale device has been developed to enable the one-step continuous flow assembly of monodisperse nanoscale liposomes using three-dimensional microfluidic hydrodynamic focusing (3D-MHF) in a concentric capillary array. The 3D-MHF flow technique displays patent advantages over conventional methods for nanoscale liposome manufacture (i.e., bulk-scale alcohol injection and/or sonication) through the on-demand synthesis of consistently uniform liposomes without the need for post-processing strategies. Liposomes produced by the 3D-MHF device are of tunable size, have a factor of two improvement in polydispersity, and a production rate that is four orders of magnitude higher than previous MHF methods, which can be attributed to entirely radially symmetric diffusion of alcohol-solvated lipid into an aqueous flow stream. Moreover, the 3D-MHF platform is simple to construct from low-cost, commercially-available components, which obviates the need for advanced microfabrication strategies necessitated by previous MHF nanoparticle synthesis platforms.


Asunto(s)
Hidrodinámica , Lípidos/química , Liposomas/química , Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
18.
PLoS One ; 9(3): e92978, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24658111

RESUMEN

Microfluidic synthesis of small and nearly-monodisperse liposomes is used to investigate the size-dependent passive transdermal transport of nanoscale lipid vesicles. While large liposomes with diameters above 105 nm are found to be excluded from deeper skin layers past the stratum corneum, the primary barrier to nanoparticle transport, liposomes with mean diameters between 31-41 nm exhibit significantly enhanced penetration. Furthermore, multicolor fluorescence imaging reveals that the smaller liposomes pass rapidly through the stratum corneum without vesicle rupture. These findings reveal that nanoscale liposomes with well-controlled size and minimal size variance are excellent vehicles for transdermal delivery of functional nanoparticle drugs.


Asunto(s)
Liposomas/farmacocinética , Microfluídica , Piel/metabolismo , Administración Cutánea , Animales , Transporte Biológico , Sistemas de Liberación de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/administración & dosificación , Liposomas/química , Nanopartículas/química , Tamaño de la Partícula , Permeabilidad , Polietilenglicoles/química , Absorción Cutánea , Porcinos , Factores de Tiempo
19.
Methods Mol Biol ; 949: 115-23, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23329439

RESUMEN

Due to their low cost compatibility with replication-based fabrication methods, thermoplastics represent an exceptionally attractive family of materials for the fabrication of lab-on-a-chip platforms. A diverse range of thermoplastic materials suitable for microfluidic fabrication is available, offering a wide selection of mechanical and chemical properties that can be leveraged and further tailored for specific applications. While high-throughput embossing methods such as reel-to-reel processing of thermoplastics is an attractive method for industrial microfluidic chip production, the use of single chip hot embossing is a cost-effective technique for realizing high-quality microfluidic devices during the prototyping stage. Here we describe methods for the replication of microscale features in two thermoplastics, polymethylmethacrylate (PMMA) and polycarbonate (PC), using hot embossing from a silicon template fabricated by deep reactive-ion etching.


Asunto(s)
Calor , Técnicas Analíticas Microfluídicas/instrumentación , Microtecnología/métodos , Cemento de Policarboxilato , Polimetil Metacrilato , Microtecnología/instrumentación , Impresión , Silicio
20.
Lab Chip ; 13(6): 1102-8, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23344819

RESUMEN

A unique technique for the rapid fabrication of thermoplastic microfluidic chips is described. The method enables the realization of fully-sealed microchannels in around one hour while requiring only minimal infrastructure by taking advantage of a solvent swelling mechanism that allows raised features to be patterned on the surface of homogeneous thermoplastic materials. Patterning is achieved without photolithography by simply drawing the desired microchannel pattern onto the polymer surface using a suitable ink as a masking layer, either manually or under robotic control, followed by timed exposure to solvent vapor to yield a desired depth for the masked channel features. The channels are then permanently sealed through solvent bonding of the microchannel chip to a mating thermoplastic substrate. The process is demonstrated using cyclic olefin copolymer as a thermoplastic material, with fully operational microfluidic devices fabricated following a true desktop manufacturing model suitable for rapid prototyping.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Tinta , Técnicas Analíticas Microfluídicas/instrumentación , Polímeros/química , Robótica , Solventes/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA