Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Small ; 19(29): e2300370, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029698

RESUMEN

Ion-interference therapy (IIT) utilizes ions to disturb intracellular biological processes and has been received increasing attention in tumor treatments recently. However, the low therapeutic efficiency still hinders its further biological applications. Herein, via a simple and one-pot gas diffusion process, polyethylene glycol (PEG)-modified Mn2+ ions and usnic acid (UA)-incorporated CaCO3 nanomaterials (PEG CaMnUA) as Ca2+ /Mn2+ ions reservoirs are prepared for magnetic resonance imaging (MRI)-guided UA-elevated IIT. Among PEG CaMnUA, UA not only increases cytoplasmic Ca2+ ions to amplify Ca2+ overload caused by CaCO3 decomposition, but also enhances Mn2+ ions-participated Fenton-like biocatalysis by intracellular H2 O2 generation and glutathione consumption. Then increasing the intracellular oxidative stress and decreasing the triphosadenine supply induce apoptosis together, resulting in UA-boosted IIT. The simple and efficient design of the dual ions reservoirs will contribute to improve the antitumor activity of IIT and further development of calcium-based nanomaterials in the future.


Asunto(s)
Nanopartículas , Neoplasias , Usnea , Biocatálisis , Línea Celular Tumoral , Iones , Imagen por Resonancia Magnética/métodos , Polietilenglicoles
2.
J Virol ; 88(22): 13173-88, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25187547

RESUMEN

UNLABELLED: Paramyxovirus particles, like other enveloped virus particles, are formed by budding from membranes of infected cells, and matrix (M) proteins are critical for this process. To identify the M protein important for this process, we have characterized the budding of the human parainfluenza virus type 3 (HPIV3) M protein. Our results showed that expression of the HPIV3 M protein alone is sufficient to initiate the release of virus-like particles (VLPs). Electron microscopy analysis confirmed that VLPs are morphologically similar to HPIV3 virions. We identified a leucine (L302) residue within the C terminus of the HPIV3 M protein that is critical for M protein-mediated VLP production by regulating the ubiquitination of the M protein. When L302 was mutated into A302, ubiquitination of M protein was defective, the release of VLPs was abolished, and the membrane binding and budding abilities of M protein were greatly weakened, but the ML302A mutant retained oligomerization activity and had a dominant negative effect on M protein-mediated VLP production. Furthermore, treatment with a proteasome inhibitor also inhibited M protein-mediated VLP production and viral budding. Finally, recombinant HPIV3 containing the M(L302A) mutant could not be rescued. These results suggest that L302 acts as a critical regulating signal for the ubiquitination of the HPIV3 M protein and virion release. IMPORTANCE: Human parainfluenza virus type 3 (HPIV3) is an enveloped virus with a nonsegmented negative-strand RNA genome. It can cause severe respiratory tract diseases, such as bronchiolitis, pneumonia, and croup in infants and young children. However, no valid antiviral therapy or vaccine is currently available. Thus, further elucidation of its assembly and budding will be helpful in the development of novel therapeutic approaches. Here, we show that a leucine residue (L302) located at the C terminus of the HPIV3 M protein is essential for efficient production of virus-like particles (VLPs). Furthermore, we found L302 regulated M protein-mediated VLP production via regulation of M protein ubiquitination. Recombinant HPIV3 containing the M(L302A) mutant is growth defective. These findings provide new insight into the critical role of M protein-mediated VLP production and virion release of a residue that does not belong to L domain and may advance our understanding of HPIV3 viral assembly and budding.


Asunto(s)
Leucina/metabolismo , Virus de la Parainfluenza 3 Humana/fisiología , Proteínas de la Matriz Viral/metabolismo , Virión/metabolismo , Liberación del Virus , Línea Celular , Análisis Mutacional de ADN , Humanos , Leucina/genética , Microscopía Electrónica de Transmisión , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Proteínas de la Matriz Viral/genética , Virosomas/metabolismo
3.
J Mater Chem B ; 9(35): 7117-7131, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34279012

RESUMEN

Immunotherapy, a strategy that leverages the host immune function to fight against cancer, plays an increasingly important role in clinical tumor therapy. In spite of the great success achieved in not only clinical treatment but also basic research, cancer immunotherapy still faces many huge challenges. Manganese oxide nanomaterials (MONs), as ideal tumor microenvironment (TME)-responsive biomaterials, are able to dramatically elicit anti-tumor immune responses in multiple ways, indicating great prospects for immunotherapy. In this review, on the basis of different mechanisms to boost immunotherapy, major highlighted topics are presented, covering adjusting an immunosuppressive TME by generating O2 (like O2-sensitized photodynamic therapy (PDT), programmed cell death ligand-1 (PD-L1) expression downregulation, reprogramming tumor-associated macrophages (TAMs), and restraining tumor angiogenesis and lactic acid exhaustion), inducing immunogenic cell death (ICD), photothermal therapy (PTT) induction, activating the stimulator of interferon gene (STING) pathway and immunoadjuvants for nanovaccines. We hope that this review will provide holistic understanding about MONs and their application in cancer immunotherapy, and thus pave the way to the translation from bench to bedside in the future.


Asunto(s)
Materiales Biocompatibles/farmacología , Inmunoterapia , Compuestos de Manganeso/farmacología , Nanoestructuras/química , Neoplasias/terapia , Óxidos/farmacología , Materiales Biocompatibles/química , Humanos , Compuestos de Manganeso/química , Ensayo de Materiales , Óxidos/química , Microambiente Tumoral/efectos de los fármacos
4.
Adv Mater ; 33(15): e2007426, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33675268

RESUMEN

Subcellular organelle-targeted nanoformulations for cancer theranostics are receiving increasing attention owing to their benefits of precise drug delivery, maximized therapeutic index, and reduced off-target side effects. Herein, a multichannel calcium ion (Ca2+ ) nanomodulator (CaNMCUR+CDDP ), i.e., a cisplatin (CDDP) and curcumin (CUR) co-incorporating calcium carbonate (CaCO3 ) nanoparticle, is prepared by a facile one-pot strategy in a sealed container with in situ synthesized polydopamine (PDA) as a template to enhance Ca2+ -overload-induced mitochondrial dysfunction in cancer therapy. After systemic administration, the PEGylated CaNMCUR+CDDP (PEG CaNMCUR+CDDP ) selectively accumulates in tumor tissues, enters tumor cells, and induces multilevel destruction of mitochondria by the combined effects of burst Ca2+ release, Ca2+ efflux inhibition by CUR, and chemotherapeutic CDDP, thereby observably boosting mitochondria-targeted tumor inhibition. Fluorescence imaging of CUR combined with photoacoustic imaging of PDA facilitates the visualization of the nanomodulator. The facile and practical design of this multichannel Ca2+ nanomodulator will contribute to the development of multimodal bioimaging-guided organelle-targeted cancer therapy in the future.


Asunto(s)
Antineoplásicos/química , Agonistas de los Canales de Calcio/química , Cisplatino/química , Curcumina/química , Mitocondrias/efectos de los fármacos , Nanocápsulas/química , Animales , Antineoplásicos/farmacocinética , Carbonato de Calcio/química , Agonistas de los Canales de Calcio/farmacocinética , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Cisplatino/farmacocinética , Curcumina/farmacocinética , Liberación de Fármacos , Quimioterapia Combinada , Humanos , Indoles/química , Ratones Desnudos , Polímeros/química , Transducción de Señal
5.
Macromol Biosci ; 20(12): e2000228, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32830435

RESUMEN

Polydopamine (PDA), a pigment in natural melanin, has attracted considerable attention because of its excellent optical properties, extraordinary adhesion, and good biocompatibility, which make it a promising material for application in energy, environmental, and biomedical fields. In this review, PDA-incorporated nanoformulations are focused for biomedical applications such as drug delivery, bioimaging, and tumor therapy. First, the recent advances in PDA-incorporated nanoformulations for drug delivery are discussed. Further, their application in boimaging, such as fluorescence imaging, photothermal imaging, and photoacoustic imaging, is reviewed. Next, their therapeutic applications, including chemotherapy, photodynamic therapy, photothermal therapy, and synergistic therapy are discussed. Finally, other biomedical applications of PDA-incorporated nanoformulations such as biosensing and clinical diagnosis are briefly presented. Finally, the biomedical applications of PDA-incorporated nanoformulations along with their prospects are summarized.


Asunto(s)
Sistemas de Liberación de Medicamentos , Indoles/química , Nanopartículas/química , Fotoquimioterapia , Polímeros/química , Doxorrubicina/química , Doxorrubicina/uso terapéutico , Humanos , Indoles/uso terapéutico , Melaninas/biosíntesis , Polímeros/uso terapéutico
6.
Adv Mater ; 32(43): e2004647, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32945002

RESUMEN

Rational design of tumor microenvironment (TME)-activated nanocomposites provides an innovative strategy to construct responsive oncotherapy. In colorectal cancer (CRC), the specific physiological features are the overexpressed endogenous H2 S and slightly acidic microenvironment. Here, a core-shell Cu2 O@CaCO3 nanostructure for CRC "turn-on" therapy is reported. With CaCO3 responsive to pH decomposition and Cu2 O responsive to H2 S sulfuration, Cu2 O@CaCO3 can be triggered "on" into the therapeutic mode by the colorectal TME. When the CaCO3 shell decomposes and releases calcium in acidic colorectal TME, the loss of protection from the CaCO3 shell exposes the Cu2 O core to be sulfuretted by H2 S to form metabolizable Cu31 S16 nanocrystals that gain remarkably strong near-infrared absorption. After modifying hyaluronic acid, Cu2 O@CaCO3 can achieve synergistic CRC-targeted and TME-triggered photothermal/photodynamic/chemodynamic/calcium-overload-mediated therapy. Moreover, it is found that the generation of hyperthermia and oxidative stress from Cu2 O@CaCO3 nanocomposites can efficiently reprogram the macrophages from the M2 phenotype to the M1 phenotype and initiate a vaccine-like immune effect after primary tumor removal, which further induces an immune-favorable TME and intense immune responses for anti-CD47 antibody to simultaneously inhibit CRC distant metastasis and recurrence by immunotherapy.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Carbonato de Calcio/química , Neoplasias Colorrectales/patología , Cobre/química , Nanocompuestos/química , Microambiente Tumoral/efectos de los fármacos , Animales , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/uso terapéutico , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Terapia Combinada , Humanos , Inmunoterapia , Ratones
7.
ACS Appl Mater Interfaces ; 11(35): 31671-31680, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31397149

RESUMEN

Hypoxia and overexpression of glutathione (GSH) are typical characteristics of the tumor microenvironment, which severely hinders cancer treatments. Here, we design a novel biodegradable therapeutic system, O2-Cu/ZIF-8@Ce6/ZIF-8@F127 (OCZCF), to simultaneously achieve GSH depletion and O2-enhanced combination therapy. Notably, the doped Cu2+ doubles the O2 storage capacity of the ZIF-8 matrix, which makes OCZCF an excellent pH-sensitive O2 reservoir for conquering tumor hypoxia, enhancing the photodynamic therapy (PDT) efficiency of chlorin e6 (Ce6) under 650 nm laser irradiation. Moreover, the released Cu2+ can act as a smart reactive oxygen species protector by consuming intracellular GSH. The byproduct Cu+ will undergo highly efficient Fenton-like reaction to achieve chemodynamic therapy (CDT) in the presence of abundant H2O2. The accompanying O2 will further alleviate hypoxia. The in vitro and in vivo experimental data indicate that OCZCF could cause remarkable tumor inhibition through enhanced synergetic PDT and CDT, which may open up a new path for cancer therapy.


Asunto(s)
Nanocompuestos , Neoplasias Experimentales , Fotoquimioterapia , Polietilenos , Polipropilenos , Porfirinas , Microambiente Tumoral/efectos de los fármacos , Animales , Línea Celular Tumoral , Clorofilidas , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Femenino , Ratones , Ratones Endogámicos BALB C , Nanocompuestos/química , Nanocompuestos/uso terapéutico , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Polietilenos/química , Polietilenos/farmacocinética , Polietilenos/farmacología , Polipropilenos/química , Polipropilenos/farmacocinética , Polipropilenos/farmacología , Porfirinas/química , Porfirinas/farmacocinética , Porfirinas/farmacología
8.
Nanoscale ; 11(31): 14654-14667, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31355836

RESUMEN

The limited light penetration depth and tumor hypoxia are two natural shortcomings of photodynamic therapy (PDT). Overcoming these two issues within a single system is still a great challenge. Herein, photosensitizer (PS)-loaded and PEG-modified MnFe2O4-decorated large-pore mesoporous silica-coated ß-NaYF4:20%Yb,2%Er@ß-NaYF4 upconversion nanoparticles (UCMnFe-PS-PEG) as excellent PDT agents are successfully prepared for NIR light-mediated and O2 self-sufficient PDT. The large mesoporous structure observably increases PS loading efficiency (11.33 wt%) and the green luminescence from upconversion nanoparticles activated by NIR is able to activate PSs to generate ROS effectively. In addition, sub-10 nm MnFe2O4 nanoparticles work as a Fenton catalyst to generate O2in situ. In vivo experiments further prove that UCMnFe-PS-PEG not only provides magnetic guidance to the tumor, but also overcomes tumor hypoxia and dramatically enhances PDT efficiency. Furthermore, in vivo MR and UCL imaging are performed for accurate cancer therapy. We believe that the successful construction of the multifunctional UCMnFe-PS-PEG provides more revelations for developing advanced nano-drug systems for cancer therapy.


Asunto(s)
Compuestos Férricos/química , Rayos Infrarrojos , Nanopartículas de Magnetita/química , Compuestos de Manganeso/química , Fármacos Fotosensibilizantes/química , Dióxido de Silicio/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Peróxido de Hidrógeno/química , Hierro/química , Campos Magnéticos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas de Magnetita/toxicidad , Ratones , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fotoquimioterapia , Polietilenglicoles/química , Porosidad , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA