Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 195: 110756, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33493536

RESUMEN

Pre-coagulation is commonly used with ultrafiltration (UF) to alleviate the membrane fouling. Compared to conventional coagulation-sedimentation-UF (CSUF) processes, the direct coagulation-UF (CUF) processes are widely believed to perform better due to the formation of a looser cake layer. It is however shown in this study that not only the density of a cake layer, but also its thickness as well, can affect the membrane fouling behavior, which therefore are influenced by both the sedimentation time and flocs characteristics. Herein, the membrane fouling performance of Fe-based coagulation-UF process was systematically investigated with different sedimentation times. A critical threshold of 30 min was observed at the lab-scale: if shorter than that, the membrane fouling depended mainly on the cake layer density, and thus CUF outperformed CSUF; but when the sedimentation time was over 30 min, the cake layer thickness turned to be the dominant factor, thereby resulting in CSUF performing better. Furthermore, it was shown that the critical sedimentation time was decided by flocs characteristics. A lower water temperature induced the formation of irregular flocs with a lower fractal dimension, and the corresponding cake layer exhibited an almost identical density with increasing sedimentation time. In this regard, CSUF processes were constantly superior to CUF as the cake layer thickness decreased. On the other hand, a critical sedimentation time reappeared because of the higher floc fractal dimension under acidic conditions. This work showed for the first time that the membrane fouling of CSUF was up to the sedimentation time, and it was possible to outperform CUF if the sedimentation time exceeded a critical threshold. Such a finding is crucial to the future development of coagulation integrated UF processes.


Asunto(s)
Ultrafiltración , Purificación del Agua , Membranas Artificiales
2.
J Environ Sci (China) ; 77: 273-281, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30573091

RESUMEN

Protein-like substances always induce severe ultrafiltration (UF) membrane fouling. To systematically understand the effect of proteins, regenerated cellulose UF membrane (commonly used for protein separation) performance was investigated in the presence of bovine serum albumin (BSA) under various water conditions. Results showed that although trypsin enhanced the membrane flux via proteolysis, catalysis took a long time. Membrane fouling was alleviated at high solution pH and low water temperature owing to the strong electrostatic repulsion force among BSA molecules. Both Na+ and Ca2+ could increase membrane flux. However, Ca2+ played a bridging role between adjacent BSA molecules, whereas membrane fouling was alleviated via a hydration repulsion force with Na+. The order of influence on membrane fouling was as follows: Ca2+ concentration > Na+ concentration > pH > temperature > trypsin concentration. Furthermore, a polyvinylidene fluoride UF membrane experiment showed that Ca2+ could reduce the fouling induced by BSA. Thus, the differences in UF membrane performance will have application potential for alleviating UF membrane fouling induced by proteins during water treatment.


Asunto(s)
Incrustaciones Biológicas , Membranas Artificiales , Albúmina Sérica Bovina/metabolismo , Ultrafiltración , Purificación del Agua , Animales , Calcio/química , Bovinos , Celulosa/química , Concentración de Iones de Hidrógeno , Concentración Osmolar , Temperatura , Tripsina/metabolismo
3.
J Environ Sci (China) ; 78: 267-275, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30665645

RESUMEN

Microplastics have caused great concern worldwide recently due to their ubiquitous presence within the marine environment. Up to now, most attention has been paid to their sources, distributions, measurement methods, and especially their eco-toxicological effects. With microplastics being increasingly detected in freshwater, it is urgently necessary to evaluate their behaviors during coagulation and ultrafiltration (UF) processes. Herein, the removal behavior of polyethylene (PE), which is easily suspended in water and is the main component of microplastics, was investigated with commonly used Fe-based salts. Results showed that although higher removal efficiency was induced for smaller PE particles, low PE removal efficiency (below 15%) was observed using the traditional coagulation process, and was little influenced by water characteristics. In comparison to solution pH, PAM addition played a more important role in increasing the removal efficiency, especially anionic PAM at high dosage (with efficiency up to 90.9%). The main reason was ascribed to the dense floc formation and high adsorption ability because of the positively charged Fe-based flocs under neutral conditions. For ultrafiltration, although PE particles could be completely rejected, slight membrane fouling was caused owing to their large particle size. The membrane flux decreased after coagulation; however, the membrane fouling was less severe than that induced by flocs alone due to the heterogeneous nature of the cake layer caused by PE, even at high dosages of Fe-based salts. Based on the behavior exhibited during coagulation and ultrafiltration, we believe these findings will have potential application in drinking water treatment.


Asunto(s)
Agua Potable/química , Plásticos/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Floculación , Hierro/química , Membranas Artificiales , Plásticos/análisis , Ultrafiltración/métodos , Contaminantes Químicos del Agua/análisis
4.
Water Res ; 215: 118190, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35278917

RESUMEN

Waste activated sludge (WAS) is an important source of non-renewable phosphorus (P) recovery. Given the factor that the occurrence states of phosphorus in WAS determines its recovery efficiency, the spatial distribution and chemical speciation of phosphorus were comprehensively and simultaneously analyzed by in-situ and step-by-step extraction methods for the first time. It was confirmed that the phosphorus in solid phase of WAS could be mainly divided into three parts: polyphosphate in cells, extracellular polymeric substances (EPS)-bound P, and phosphate precipitated with metals (P-precipitates) in extracellular inorganic minerals. Among these forms, EPS-bound P (mainly orthophosphate, Ortho-P) and P-precipitates (mainly Ca-P, Fe-P, Al-P, and Mg-P) were the major forms of phosphorus in WAS, accounting for 65%-82% of total phosphorus (TP). Owing to the acid solubility of P-precipitates, acid extraction could be a potentially effective means for phosphorus recovery. However, the co-solution of metals may hinder the phosphorus recovery and the EPS-bound P cannot be recovered by acid extraction. To enhance phosphorus release from EPS and reduce metal interference, a targeted clean extraction technology using acidic cation exchange resin (ACER) was also developed. The results showed that a low dosage ACER could effectively extract EPS-bound P and P-precipitates, and the content of phosphorus in the extract exceeded 50% of TP. Compared with acid extraction, the release efficiency of TP increased by 13%-23%, and the dissolved metal content decreased by more than 90% in the extract by ACER. This was attributed to the acidification and metal capture by ACER. Finally, more than 90% of Ortho-P in the extract was recovered as calcium phosphate, which alleviated the depletion of phosphorus resources.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Resinas de Intercambio de Catión , Fosfatos , Fósforo/química , Polímeros , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos
5.
Chemosphere ; 197: 793-802, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29407843

RESUMEN

Severe ultrafiltration (UF) membrane fouling is always induced by humic acid (HA). However, little attention has been paid to the influence of inorganic salts, and even the studies related have been limited to only a single kind of salt. In addition, the concentration of the inorganic salts reported in previous studies is much high. Herein, the effect of HA on UF membrane performance was investigated in the presence of typical inorganic salts, with concentrations similar to those in natural waters or actually used in most current water plants. The results showed that membrane performance was influenced little by monovalent inorganic salts (NaCl and KCl), while divalent inorganic salts (CaCl2 and MgCl2) could exacerbate the membrane fouling. For trivalent inorganic salts (AlCl3·6H2O and FeCl3·6H2O), floc adsorption was the dominant HA removing mechanism, and AlCl3·6H2O behaved better than FeCl3·6H2O. Relating to the floc properties, severe membrane fouling occurred with low dosage, while it was mitigated with high dosage. Compared with the trivalent inorganic salts, more severe membrane fouling was caused by divalent inorganic salts. Additionally, little synergistic or inhibitory effect occurred with mixtures of divalent inorganic salts and trivalent inorganic salts. Furthermore, analysis with the classical fouling models showed that cake filtration was the main fouling mechanism with/without inorganic salts. Based on the findings, we believe these different HA behaviors exhibited during coagulation process with inorganic salts will have a large potential application in UF membrane fouling alleviation in water treatment.


Asunto(s)
Sustancias Húmicas/análisis , Membranas Artificiales , Ultrafiltración/métodos , Purificación del Agua/métodos , Adsorción , Sulfatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA