Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Talanta ; 161: 860-866, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27769494

RESUMEN

Zwitterionic polymer stationary phases have attracted increasing attention in hydrophilic interaction chromatography (HILIC). In this work, a zwitterionic sulfobetaine functionalized polyacrylamide stationary phase (named TENS) based on porous silica particles was prepared via controlled surface initiated reversible addition-fragmentation transfer (RAFT) polymerization. Instead of traditional methacrylate type sulfobetaine monomer, acrylamide type sulfobetaine monomer, which has higher chemical stability and hydrophicility, was employed in this work. The characterization of elemental analysis and solid-state 13C cross polarization/magic-angle-spinning nuclear magnetic resonance indicated the successful preparation of TENS stationary phase. Meanwhile, scanning electron microscope (SEM), nitrogen adsorption experiment and study of size exclusion performance were conducted, revealing that the surface initiated polymerization was well controlled. For better understanding of TENS material under HILIC mode, chromatographic evaluation of TENS material was performed, among which, TENS material exhibited good hydrophilicity and chemical stability. To further study the applicability of TENS material, saccharides which were considered as challenging targets in HILIC, were chosen as tested analytes. Various saccharide samples, including fructooligosaccharide, trisaccharide isomers and ginsenosides, were well separated on TENS material. Moreover, TENS material displayed good selectivity for the enrichment of glycopeptides. These results demonstrated the capability of TENS as a promising material in glycomics and glycoproteomics.


Asunto(s)
Resinas Acrílicas/química , Betaína/análogos & derivados , Dióxido de Silicio/química , Betaína/química , Cromatografía Liquida/métodos , Glicopéptidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoglobulina G/química , Polimerizacion , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA