Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Biomater ; 166: 147-154, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37207742

RESUMEN

Compared to classical block copolymers, the self-assembly of small molecules shows an advantage in addressing small features. As a new type of solvent-free ionic complexes, azobenzene-containing DNA thermotropic liquid crystals (TLCs) form an assembly as block copolymers when using small DNA. However, the self-assembly behavior of such biomaterials has not been fully investigated. In this study, photoresponsive DNA TLCs are fabricated by employing an azobenzene-containing surfactant with double flexible chains. For these DNA TLCs, the self-assembly behavior of DNA and surfactants could be guided by the factors of the molar ratio of azobenzene-containing surfactant, dsDNA/ssDNA, and presence or absence of water, which addresses the bottom-up control on domain spacing of mesophase. Meanwhile, such DNA TLCs also gain top-down control on morphology via photoinduced phase change. This work would provide a strategy for regulating the small features of solvent-free biomaterials, facilitating the development of patterning templates based on photoresponsive biomaterials. STATEMENT OF SIGNIFICANCE: The relationship between nanostructure and function is attractive in the science of biomaterials. With biocompatibility and degradability, photoresponsive DNA materials in solutions have been widely studied in biological and medical areas, but they are still hard to obtain in a condensed state. The complex created with designed azobenzene-containing surfactants paves the way for obtaining condensed photoresponsive DNA materials. However, fine control of the small features of such biomaterials has not yet been achieved. In this study, we present a bottom-up strategy of controlling the small features of such DNA materials and, simultaneously, the top-down control of morphology via photoinduced phase change. This work provides a bi-directional approach to controlling the small features of condensed biomaterials.


Asunto(s)
Cristales Líquidos , Tensoactivos , Tensoactivos/química , Cristales Líquidos/química , ADN/química , Compuestos Azo/química , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA