Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Microbiol ; 18(12): 5112-5122, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27555215

RESUMEN

Ruminococcus champanellensis is a keystone species in the human gut that produces an intricate cellulosome system of various architectures. A variety of cellulosomal enzymes have been identified, which exhibit a range of hydrolytic activities on lignocellulosic substrates. We describe herein a unique R. champanellensis scaffoldin, ScaK, which is expressed during growth on cellobiose and comprises a cohesin module and a family 25 glycoside hydrolase (GH25). The GH25 is non-autolytic and exhibits lysozyme-mediated lytic activity against several bacterial species. Despite the narrow acidic pH curve, the enzyme is active along a temperature range from 2 to 85°C and is stable at very high temperatures for extended incubation periods. The ScaK cohesin was shown to bind selectively to the dockerin of a monovalent scaffoldin (ScaG), thus enabling formation of a cell-free cellulosome, whereby ScaG interacts with a divalent scaffodin (ScaA) that bears the enzymes either directly or through additional monovalent scaffoldins (ScaC and ScaD). The ScaK cohesin also interacts with the dockerin of a protein comprising multiple Fn3 domains that can potentially promote adhesion to carbohydrates and the bacterial cell surface. A cell-free cellulosomal GH25 lysozyme may provide a bacterial strategy to both hydrolyze lignocellulose and repel eventual food competitors and/or cheaters.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosomas/enzimología , Muramidasa/metabolismo , Ruminococcus/enzimología , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Celulosa/metabolismo , Celulosomas/genética , Celulosomas/metabolismo , Humanos , Muramidasa/genética , Ruminococcus/genética , Ruminococcus/metabolismo
2.
Environ Microbiol ; 18(2): 542-56, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26347002

RESUMEN

Ruminococcus champanellensis is considered a keystone species in the human gut that degrades microcrystalline cellulose efficiently and contains the genetic elements necessary for cellulosome production. The basic elements of its cellulosome architecture, mainly cohesin and dockerin modules from scaffoldins and enzyme-borne dockerins, have been characterized recently. In this study, we cloned, expressed and characterized all of the glycoside hydrolases that contain a dockerin module. Among the 25 enzymes, 10 cellulases, 4 xylanases, 3 mannanases, 2 xyloglucanases, 2 arabinofuranosidases, 2 arabinanases and one ß-glucanase were assessed for their comparative enzymatic activity on their respective substrates. The dockerin specificities of the enzymes were examined by ELISA, and 80 positives out of 525 possible interactions were detected. Our analysis reveals a fine-tuned system for cohesin-dockerin specificity and the importance of diversity among the cohesin-dockerin sequences. Our results imply that cohesin-dockerin pairs are not necessarily assembled at random among the same specificity types, as generally believed for other cellulosome-producing bacteria, but reveal a more organized cellulosome architecture. Moreover, our results highlight the importance of the cellulosome paradigm for cellulose and hemicellulose degradation by R. champanellensis in the human gut.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulosa/metabolismo , Celulosomas/enzimología , Proteínas Cromosómicas no Histona/metabolismo , Microbioma Gastrointestinal/fisiología , Ruminococcus/enzimología , Glicósido Hidrolasas/metabolismo , Humanos , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Ruminococcus/genética , Cohesinas
3.
Environ Microbiol ; 17(9): 3407-26, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25845888

RESUMEN

A cellulolytic fiber-degrading bacterium, Ruminococcus champanellensis, was isolated from human faecal samples, and its genome was recently sequenced. Bioinformatic analysis of the R. champanellensis genome revealed numerous cohesin and dockerin modules, the basic elements of the cellulosome, and manual sequencing of partially sequenced genomic segments revealed two large tandem scaffoldin-coding genes that form part of a gene cluster. Representative R. champanellensis dockerins were tested against putative cohesins, and the results revealed three different cohesin-dockerin binding profiles which implied two major types of cellulosome architectures: (i) an intricate cell-bound system and (ii) a simplistic cell-free system composed of a single cohesin-containing scaffoldin. The cell-bound system can adopt various enzymatic architectures, ranging from a single enzyme to a large enzymatic complex comprising up to 11 enzymes. The variety of cellulosomal components together with adaptor proteins may infer a very tight regulation of its components. The cellulosome system of the human gut bacterium R. champanellensis closely resembles that of the bovine rumen bacterium Ruminococcus flavefaciens. The two species contain orthologous gene clusters comprising fundamental components of cellulosome architecture. Since R. champanellensis is the only human colonic bacterium known to degrade crystalline cellulose, it may thus represent a keystone species in the human gut.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/genética , Celulosa/metabolismo , Celulosomas/genética , Proteínas Cromosómicas no Histona/genética , Complejos Multienzimáticos/genética , Rumen/microbiología , Ruminococcus/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/clasificación , Secuencia de Bases , Bovinos , Proteínas de Ciclo Celular/clasificación , Proteínas Cromosómicas no Histona/clasificación , ADN Bacteriano/genética , Heces/microbiología , Humanos , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Familia de Multigenes/genética , Filogenia , Ruminococcus/genética , Ruminococcus/aislamiento & purificación , Análisis de Secuencia de ADN , Cohesinas
4.
Environ Microbiol ; 16(9): 2879-90, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23919528

RESUMEN

The recently isolated bacterial strain 80/3 represents one of the most abundant 16S rRNA phylotypes detected in the healthy human large intestine and belongs to the Ruminococcaceae family of Firmicutes. The completed genome sequence reported here is the first for a member of this important family of bacteria from the human colon. The genome comprises two large chromosomes of 2.24 and 0.73 Mbp, leading us to propose the name Ruminococcus bicirculans for this new species. Analysis of the carbohydrate active enzyme complement suggests an ability to utilize certain hemicelluloses, especially ß-glucans and xyloglucan, for growth that was confirmed experimentally. The enzymatic machinery enabling the degradation of cellulose and xylan by related cellulolytic ruminococci is however lacking in this species. While the genome indicated the capacity to synthesize purines, pyrimidines and all 20 amino acids, only genes for the synthesis of nicotinate, NAD+, NADP+ and coenzyme A were detected among the essential vitamins and co-factors, resulting in multiple growth requirements. In vivo, these growth factors must be supplied from the diet, host or other gut microorganisms. Other features of ecological interest include two type IV pilins, multiple extracytoplasmic function-sigma factors, a urease and a bile salt hydrolase.


Asunto(s)
Colon/microbiología , Genoma Bacteriano , Microbiota , Ruminococcus/genética , Celulosa/metabolismo , Cromosomas Bacterianos , ADN Bacteriano/genética , Humanos , Filogenia , Polisacáridos/metabolismo , ARN Ribosómico 16S/genética , Ruminococcus/metabolismo , Xilanos/metabolismo , beta-Glucanos/metabolismo
5.
Biochem Soc Trans ; 39(4): 1073-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21787350

RESUMEN

The human colonic microbiota degrades dietary substrates that are indigestible in the upper GIT (gastrointestinal tract), releasing bacterial metabolites, some of which are important for gut health. Advances in molecular biology techniques have facilitated detailed analyses of the composition of the bacterial community resident in the lower GIT. Such analyses have indicated that more than 500 different bacterial species colonize an individual, and that, although there is much functional consistency in the resident bacterial groups, there is considerable inter-individual variation at the species/strain level. The bacterial community develops during early childhood until it reaches an adult-like composition. Whereas colonization and host factors influence the species composition, dietary factors also have an important impact, with specific bacterial groups changing in response to specific dietary interventions. Since bacterial species have different metabolic activities, specific diets have various consequences for health, dependent on the effect exerted on the bacterial population.


Asunto(s)
Dieta , Tracto Gastrointestinal/microbiología , Salud , Animales , Bacteroides/crecimiento & desarrollo , Bacteroides/metabolismo , Celulosa/metabolismo , Tracto Gastrointestinal/patología , Bacterias Grampositivas/crecimiento & desarrollo , Bacterias Grampositivas/metabolismo , Humanos , Metagenoma , Prebióticos , Almidón/metabolismo
6.
PLoS One ; 9(7): e99221, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24992679

RESUMEN

BACKGROUND: A complex community of microorganisms is responsible for efficient plant cell wall digestion by many herbivores, notably the ruminants. Understanding the different fibrolytic mechanisms utilized by these bacteria has been of great interest in agricultural and technological fields, reinforced more recently by current efforts to convert cellulosic biomass to biofuels. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have used a bioinformatics-based approach to explore the cellulosome-related components of six genomes from two of the primary fiber-degrading bacteria in the rumen: Ruminococcus flavefaciens (strains FD-1, 007c and 17) and Ruminococcus albus (strains 7, 8 and SY3). The genomes of two of these strains are reported for the first time herein. The data reveal that the three R. flavefaciens strains encode for an elaborate reservoir of cohesin- and dockerin-containing proteins, whereas the three R. albus strains are cohesin-deficient and encode mainly dockerins and a unique family of cell-anchoring carbohydrate-binding modules (family 37). CONCLUSIONS/SIGNIFICANCE: Our comparative genome-wide analysis pinpoints rare and novel strain-specific protein architectures and provides an exhaustive profile of their numerous lignocellulose-degrading enzymes. This work provides blueprints of the divergent cellulolytic systems in these two prominent fibrolytic rumen bacterial species, each of which reflects a distinct mechanistic model for efficient degradation of cellulosic biomass.


Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano/fisiología , Estudio de Asociación del Genoma Completo , Ruminococcus/genética , Proteínas Bacterianas/metabolismo , Celulosa/metabolismo , Ruminococcus/clasificación , Ruminococcus/metabolismo
7.
PLoS One ; 8(6): e65333, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23750253

RESUMEN

BACKGROUND: Ruminococcus flavefaciens is an important fibre-degrading bacterium found in the mammalian gut. Cellulolytic strains from the bovine rumen have been shown to produce complex cellulosome structures that are associated with the cell surface. R. flavefaciens 007 is a highly cellulolytic strain whose ability to degrade dewaxed cotton, but not Avicel cellulose, was lost following initial isolation in the variant 007S. The ability was recovered after serial subculture to give the cotton-degrading strain 007C. This has allowed us to investigate the factors required for degradation of this particularly recalcitrant form of cellulose. METHODOLOGY/PRINCIPAL FINDINGS: The major proteins associated with the bacterial cell surface and with the culture supernatant were analyzed for R. flavefaciens 007S and 007C grown with cellobiose, xylan or Avicel cellulose as energy sources. Identification of the proteins was enabled by a draft genome sequence obtained for 007C. Among supernatant proteins a cellulosomal GH48 hydrolase, a rubrerthyrin-like protein and a protein with type IV pili N-terminal domain were the most strongly up-regulated in 007C cultures grown on Avicel compared with cellobiose. Strain 007S also showed substrate-related changes, but supernatant expression of the Pil protein and rubrerythrin in particular were markedly lower in 007S than in 007C during growth on Avicel. CONCLUSIONS/SIGNIFICANCE: This study provides new information on the extracellular proteome of R. flavefaciens and its regulation in response to different growth substrates. Furthermore it suggests that the cotton cellulose non-degrading strain (007S) has altered regulation of multiple proteins that may be required for breakdown of cotton cellulose. One of these, the type IV pilus was previously shown to play a role in adhesion to cellulose in R. albus, and a related pilin protein was identified here for the first time as a major extracellular protein in R. flavefaciens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosomas/metabolismo , Espacio Extracelular/metabolismo , Fimbrias Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteoma/metabolismo , Ruminococcus/citología , Ruminococcus/metabolismo , Proteínas Bacterianas/genética , Celulosa/metabolismo , Fimbrias Bacterianas/genética , Hemeritrina/metabolismo , Familia de Multigenes , Proteoma/genética , Rubredoxinas/metabolismo , Ruminococcus/genética , Ruminococcus/crecimiento & desarrollo
8.
Gut Microbes ; 3(4): 289-306, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22572875

RESUMEN

Bacteria that colonize the mammalian intestine collectively possess a far larger repertoire of degradative enzymes and metabolic capabilities than their hosts. Microbial fermentation of complex non-digestible dietary carbohydrates and host-derived glycans in the human intestine has important consequences for health. Certain dominant species, notably among the Bacteroidetes, are known to possess very large numbers of genes that encode carbohydrate active enzymes and can switch readily between different energy sources in the gut depending on availability. Nevertheless, more nutritionally specialized bacteria appear to play critical roles in the community by initiating the degradation of complex substrates such as plant cell walls, starch particles and mucin. Examples are emerging from the Firmicutes, Actinobacteria and Verrucomicrobium phyla, but more information is needed on these little studied groups. The impact of dietary carbohydrates, including prebiotics, on human health requires understanding of the complex relationship between diet composition, the gut microbiota and metabolic outputs.


Asunto(s)
Bacterias/metabolismo , Metabolismo de los Hidratos de Carbono , Tracto Gastrointestinal/microbiología , Metagenoma , Celulosa/metabolismo , Fermentación , Humanos , Mucinas/metabolismo , Almidón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA