Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Viruses ; 15(9)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37766357

RESUMEN

Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.


Asunto(s)
Colorantes Fluorescentes , Polietilenglicoles , Polielectrolitos , Inmunoglobulina G
2.
Langmuir ; 28(42): 14867-77, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22950722

RESUMEN

The capability of some natural molecular building blocks to self-organize into defined supramolecular architectures is a versatile tool for nanotechnological applications. Their site-selective integration into a technical context, however, still poses a major challenge. RNA-directed self-assembly of tobacco mosaic virus-derived coat protein on immobilized RNA scaffolds presents a possibility to grow nucleoprotein nanotubes in place. Two new methods for their site-selective, bottom-up assembly are introduced. For this purpose, isothiocyanate alkoxysilane was used to activate oxidic surfaces for the covalent immobilization of DNA oligomers, which served as linkers for assembly-directing RNA. Patterned silanization of surfaces was achieved (1) on oxidic surfaces via dip-pen nanolithography and (2) on polymer surfaces (poly(dimethylsiloxane)) via selective oxidization by UV-light irradiation in air. Atomic force microscopy and X-ray photoelectron spectroscopy were used to characterize the surfaces. It is shown for the first time that the combination of the mentioned structuring methods and the isothiocyanate-based chemistry is appropriate (1) for the site-selective immobilization of nucleic acids and, thus, (2) for the formation of viral nanoparticles by bottom-up self-assembly after adding the corresponding coat proteins.


Asunto(s)
Dimetilpolisiloxanos/química , Nanotubos/química , Nucleoproteínas/química , Dióxido de Silicio/química , Virus del Mosaico del Tabaco/química , ADN/química , ARN/química , Propiedades de Superficie
3.
ACS Nano ; 5(6): 4512-20, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21591634

RESUMEN

Tobacco mosaic virus (TMV) is a tube-shaped, exceptionally stable plant virus, which is among the biomolecule complexes offering most promising perspectives for nanotechnology applications. Every viral nanotube self-assembles from a single RNA strand and numerous identical coat protein (CP) subunits. Here we demonstrate that biotechnologically engineered RNA species containing the TMV origin of assembly can be selectively attached to solid surfaces via one end and govern the bottom-up growth of surface-linked TMV-like nanotubes in situ on demand. SiO(2) wafers patterned by polymer blend lithography were modified in a chemically selective manner, which allowed positioning of in vitro produced RNA scaffolds into predefined patches on the 100-500 nm scale. The RNA operated as guiding strands for the self-assembly of spatially ordered nanotube 3D arrays on the micrometer scale. This novel approach may promote technically applicable production routes toward a controlled integration of multivalent biotemplates into miniaturized devices to functionalize poorly accessible components prior to use. Furthermore, the results mark a milestone in the experimental verification of viral nucleoprotein complex self-assembly mechanisms.


Asunto(s)
Nanotecnología/métodos , Nanotubos/química , ARN/química , Virus del Mosaico del Tabaco/metabolismo , Aldehídos/química , Biotecnología/métodos , ADN/química , Microscopía de Fuerza Atómica/métodos , Modelos Químicos , Conformación Molecular , Nucleoproteínas/química , Polímeros/química , Polimetil Metacrilato/química , Poliestirenos/química , ARN Ligasa (ATP)/química , Silicio/química , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA