Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nature ; 468(7327): 1053-60, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21179161

RESUMEN

Using DNA extracted from a finger bone found in Denisova Cave in southern Siberia, we have sequenced the genome of an archaic hominin to about 1.9-fold coverage. This individual is from a group that shares a common origin with Neanderthals. This population was not involved in the putative gene flow from Neanderthals into Eurasians; however, the data suggest that it contributed 4-6% of its genetic material to the genomes of present-day Melanesians. We designate this hominin population 'Denisovans' and suggest that it may have been widespread in Asia during the Late Pleistocene epoch. A tooth found in Denisova Cave carries a mitochondrial genome highly similar to that of the finger bone. This tooth shares no derived morphological features with Neanderthals or modern humans, further indicating that Denisovans have an evolutionary history distinct from Neanderthals and modern humans.


Asunto(s)
Fósiles , Flujo Génico , Genoma/genética , Hominidae/clasificación , Hominidae/genética , Animales , Asia , ADN Mitocondrial/genética , Europa (Continente) , Falanges de los Dedos de la Mano/química , Humanos , Melanesia , Datos de Secuencia Molecular , Filogenia , Siberia , Diente/anatomía & histología , Diente/química
2.
Hum Mutat ; 34(2): 296-300, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23086778

RESUMEN

Kohlschütter-Tönz syndrome (KTS) is a rare autosomal recessive disorder characterized by amelogenesis imperfecta, psychomotor delay or regression and seizures starting early in childhood. KTS was established as a distinct clinical entity after the first report by Kohlschütter in 1974, and to date, only a total of 20 pedigrees have been reported. The genetic etiology of KTS remained elusive until recently when mutations in ROGDI were independently identified in three unrelated families and in five likely related Druze families. Herein, we report a clinical and genetic study of 10 KTS families. By using a combination of whole exome sequencing, linkage analysis, and Sanger sequencing, we identify novel homozygous or compound heterozygous ROGDI mutations in five families, all presenting with a typical KTS phenotype. The other families, mostly presenting with additional atypical features, were negative for ROGDI mutations, suggesting genetic heterogeneity of atypical forms of the disease.


Asunto(s)
Amelogénesis Imperfecta/genética , Demencia/genética , Epilepsia/genética , Heterogeneidad Genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Preescolar , Exoma , Femenino , Eliminación de Gen , Ligamiento Genético , Humanos , Lactante , Masculino , Mutación , Linaje , Fenotipo , Análisis de Secuencia de ADN
3.
Mol Plant ; 13(2): 336-350, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31838037

RESUMEN

The rubber tree, Hevea brasiliensis, produces natural rubber that serves as an essential industrial raw material. Here, we present a high-quality reference genome for a rubber tree cultivar GT1 using single-molecule real-time sequencing (SMRT) and Hi-C technologies to anchor the ∼1.47-Gb genome assembly into 18 pseudochromosomes. The chromosome-based genome analysis enabled us to establish a model of spurge chromosome evolution, since the common paleopolyploid event occurred before the split of Hevea and Manihot. We show recent and rapid bursts of the three Hevea-specific LTR-retrotransposon families during the last 10 million years, leading to the massive expansion by ∼65.88% (∼970 Mbp) of the whole rubber tree genome since the divergence from Manihot. We identify large-scale expansion of genes associated with whole rubber biosynthesis processes, such as basal metabolic processes, ethylene biosynthesis, and the activation of polysaccharide and glycoprotein lectin, which are important properties for latex production. A map of genomic variation between the cultivated and wild rubber trees was obtained, which contains ∼15.7 million high-quality single-nucleotide polymorphisms. We identified hundreds of candidate domestication genes with drastically lowered genomic diversity in the cultivated but not wild rubber trees despite a relatively short domestication history of rubber tree, some of which are involved in rubber biosynthesis. This genome assembly represents key resources for future rubber tree research and breeding, providing novel targets for improving plant biotic and abiotic tolerance and rubber production.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Genoma de Planta/genética , Hevea/genética , Goma/metabolismo , Mapeo Cromosómico , Domesticación , Euphorbia/clasificación , Euphorbia/genética , Euphorbia/metabolismo , Hevea/clasificación , Hevea/metabolismo , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retroelementos , Tetraploidía
4.
Eur J Hum Genet ; 24(8): 1145-53, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26757981

RESUMEN

Recently WAC was reported as a candidate gene for intellectual disability (ID) based on the identification of a de novo mutation in an individual with severe ID. WAC regulates transcription-coupled histone H2B ubiquitination and has previously been implicated in the 10p12p11 contiguous gene deletion syndrome. In this study, we report on 10 individuals with de novo WAC mutations which we identified through routine (diagnostic) exome sequencing and targeted resequencing of WAC in 2326 individuals with unexplained ID. All but one mutation was expected to lead to a loss-of-function of WAC. Clinical evaluation of all individuals revealed phenotypic overlap for mild ID, hypotonia, behavioral problems and distinctive facial dysmorphisms, including a square-shaped face, deep set eyes, long palpebral fissures, and a broad mouth and chin. These clinical features were also previously reported in individuals with 10p12p11 microdeletion syndrome. To investigate the role of WAC in ID, we studied the importance of the Drosophila WAC orthologue (CG8949) in habituation, a non-associative learning paradigm. Neuronal knockdown of Drosophila CG8949 resulted in impaired learning, suggesting that WAC is required in neurons for normal cognitive performance. In conclusion, we defined a clinically recognizable ID syndrome, caused by de novo loss-of-function mutations in WAC. Independent functional evidence in Drosophila further supported the role of WAC in ID. On the basis of our data WAC can be added to the list of ID genes with a role in transcription regulation through histone modification.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras/genética , Anomalías Craneofaciales/genética , Proteínas de Drosophila/genética , Discapacidad Intelectual/genética , Discapacidades para el Aprendizaje/genética , Mutación , Adolescente , Animales , Proteínas Portadoras/metabolismo , Niño , Preescolar , Anomalías Craneofaciales/diagnóstico , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Femenino , Habituación Psicofisiológica , Humanos , Discapacidad Intelectual/diagnóstico , Aprendizaje , Discapacidades para el Aprendizaje/diagnóstico , Masculino , Fenotipo , Síndrome , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA