Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 16(8)2016 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-27509496

RESUMEN

This paper presents the design and development of a low cost and reliable maximal voluntary bite force sensor which can be manufactured in-house by using an acrylic laser cutting machine. The sensor has been designed for ease of fabrication, assembly, calibration, and safe use. The sensor is capable of use within an hour of commencing production, allowing for rapid prototyping/modifications and practical implementation. The measured data shows a good linear relationship between the applied force and the electrical resistance of the sensor. The output signal has low drift, excellent repeatability, and a large measurable range of 0 to 700 N. A high signal-to-noise response to human bite forces was observed, indicating the high potential of the proposed sensor for human bite force measurement.


Asunto(s)
Técnicas Biosensibles/instrumentación , Fuerza de la Mordida , Análisis del Estrés Dental/instrumentación , Diseño de Equipo , Humanos , Fenómenos Mecánicos
2.
ACS Appl Mater Interfaces ; 15(25): 29777-29788, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37318848

RESUMEN

Electrohydrodynamic atomization (EHDA) provides unparalleled control over the size and production rate of particles from solution. However, conventional methods produce highly charged particles that are not appropriate for inhalation drug delivery. We present a self-propelled EHDA system to address this challenge, a promising one-step platform for generating and delivering charge-reduced particles. Our approach uses a sharp electrode to produce ion wind, which reduces the cumulative charge in the particles and transports them to a target in front of the nozzle. We effectively controlled the morphologies of polymer products created from poly(vinylidene fluoride) (PVDF) at various concentrations. Our technique has also been proven safe for bioapplications, as evidenced by the delivery of PVDF particles onto breast cancer cells. The combination of simultaneous particle production and charge reduction, along with its direct delivery capability, makes the self-propelled EHDA a versatile technique for drug delivery applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Polivinilos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA