Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792194

RESUMEN

The theoretical interpretation of the vaginal permeability phenomenon, the evaluation of the suitability of five artificial membranes, and the prediction of the behaviors of vaginal drugs were the main objectives of this study. Franz vertical diffusion cells and different validated HPLC methods were used to measure the permeability of six vaginally administered drugs (econazole, miconazole, metronidazole, clindamycin, lidocaine, and nonoxynol-9). This study was performed (in vitro) on different membranes of polyvinylidene fluoride (PVDF), plain cellulose or cellulose impregnated with isopropyl myristate (IPM), and cellulose combined with PVDF or IPM. The results were compared with those obtained from cow vaginal tissue (ex vivo), where cellulose was proven to be the best simulant. According to the permeability profiles (Papp), the water solubility of the drugs was considered a necessary criterion for their transport in the membranes or in the tissue, while the size was important for their penetration. Furthermore, it was found that polar compounds show clear superiority when penetrating cellulose or tissue, while non-polar ones show superiority when penetrating the lipophilic PVDF membrane. Finally, a successful attempt was made to predict the Papp values (|Papp-predPapp| < 0.005) of the six drugs under study based on a PLS (Partial Least Squares) in silico simulation model.


Asunto(s)
Membranas Artificiales , Permeabilidad , Vagina , Femenino , Vagina/metabolismo , Administración Intravaginal , Animales , Polivinilos/química , Celulosa/química , Celulosa/análogos & derivados , Bovinos , Humanos , Solubilidad , Polímeros de Fluorocarbono
2.
Mol Pharm ; 19(1): 274-286, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34877863

RESUMEN

Most common intraocular pressure (IOP) reduction regimens for the management of glaucoma include the topical use of eye drops, a dosage form that is associated with short residence time at the site of action, increased dosing frequency, and reduced patient compliance. In situ gelling nanofiber films comprising poly(vinyl alcohol) and Poloxamer 407 were fabricated via electrospinning for the ocular delivery of timolol maleate (TM), aiming to sustain the IOP-lowering effect of the ß-blocker, compared to conventional eye drops. The electrospinning process was optimized, and the physicochemical properties of the developed formulations were thoroughly investigated. The fiber diameters of the drug-loaded films ranged between 123 and 145 nm and the drug content between 5.85 and 7.83% w/w. Total in vitro drug release from the ocular films was attained within 15 min following first-order kinetics, showing higher apparent permeability (Papp) values across porcine corneas compared to the drug's solution. The fabricated films did not induce any ocular irritation as evidenced by both the hen's egg test on chorioallantoic membrane and the in vivo Draize test. In vivo administration of the ocular films in rabbits induced a faster onset of action and a sustained IOP-lowering effect up to 24 h compared to TM solution, suggesting that the proposed ocular films are promising systems for the sustained topical delivery of TM.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Geles , Presión Intraocular/efectos de los fármacos , Timolol/farmacología , Administración Oftálmica , Antagonistas Adrenérgicos beta/administración & dosificación , Animales , Cromatografía Líquida de Alta Presión , Córnea/efectos de los fármacos , Córnea/metabolismo , Geles/administración & dosificación , Poloxámero , Alcohol Polivinílico , Porcinos , Timolol/administración & dosificación
3.
AAPS PharmSciTech ; 22(1): 23, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33400042

RESUMEN

Cannabidiol (CBD) and cannabigerol (CBG) are two active pharmaceutical ingredients, derived from cannabis plant. In the present study, CBD and CBG were formulated with polyvinyl(pyrrolidone) (PVP) and Eudragit L-100, using electrohydrodynamic atomization (electrospinning). The produced fibers were smooth and uniform in shape, with average fiber diameters in the range of 700-900 nm for PVP fibers and 1-5 µm for Eudragit L-100 fibers. The encapsulation efficiency for both CB and CBG was high (over 90%) for all formulations tested. Both in vitro release and disintegration tests of the formulations in simulated gastric fluids (SGF) and simulated intestinal fluids (SIF) indicated the rapid disintegration and dissolution of the fibers and the subsequent rapid release of the drugs. The study concluded that the electrospinning process is a fast and efficient method to produce drug-loaded fibers suitable for the per os administration of cannabinoids.


Asunto(s)
Cannabidiol/administración & dosificación , Cannabinoides/administración & dosificación , Nanofibras/química , Administración Oral , Cannabidiol/química , Cannabinoides/química , Composición de Medicamentos , Liberación de Fármacos , Ácidos Polimetacrílicos/química , Povidona/química
4.
Drug Dev Ind Pharm ; 46(8): 1253-1264, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32597338

RESUMEN

OBJECTIVE: The inkjet printing (IP) and fused deposition modeling (FDM) technologies have emerged in the pharmaceutical field as novel and personalized formulation approaches. Specific manufacturing factors must be considered in each adopted methodology, i.e. the development of suitable substrates for IP and the incorporation of highly thermostable active pharmaceutical compounds (APIs) for FDM. In this study, IP and FDM printing technologies were investigated for the fabrication of hydroxypropyl methylcellulose-based mucoadhesive films for the buccal delivery of a thermolabile model drug. Significance: This proof-of-concept approach was expected to provide an alternative formulation methodology for personalized mucoadhesive buccal films. METHODS: Mucoadhesive substrates were prepared by FDM and were subjected to sequential IP of an ibuprofen-loaded liquid ink. The interactions between these processes and the performance of the films were evaluated by various analytical and spectroscopic techniques, as well as by in vitro and ex vivo studies. RESULTS: The model drug was efficiently deposited by sequential IP passes onto the FDM-printed substrates. Significant variations were revealed on the morphological, physicochemical and mechanical properties of the prepared films, and linked to the number of IP passes. The mechanism of drug release, the mucoadhesion and the permeation of the drug through the buccal epithelium were evaluated, in view of the extent of ink deposition onto the buccal films, as well as the distribution of the API. CONCLUSIONS: The presented methodology provided a proof-of-concept formulation approach for the development of personalized mucoadhesive films.


Asunto(s)
Derivados de la Hipromelosa/química , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Impresión Tridimensional
5.
Molecules ; 25(6)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197506

RESUMEN

One of the most challenging goals in modern pharmaceutical research is to develop models that can predict drugs' behavior, particularly permeability in human tissues. Since the permeability is closely related to the molecular properties, numerous characteristics are necessary in order to develop a reliable predictive tool. The present study attempts to decode the permeability by correlating the apparent permeability coefficient (Papp) of 33 steroids with their properties (physicochemical and structural). The Papp of the molecules was determined by in vitro experiments and the results were plotted as Y variable on a Partial Least Squares (PLS) model, while 37 pharmacokinetic and structural properties were used as X descriptors. The developed model was subjected to internal validation and it tends to be robust with good predictive potential (R2Y = 0.902, RMSEE = 0.00265379, Q2Y = 0.722, RMSEP = 0.0077). Based on the results specific properties (logS, logP, logD, PSA and VDss) were proved to be more important than others in terms of drugs Papp. The models can be utilized to predict the permeability of a new candidate drug avoiding needless animal experiments, as well as time and material consuming experiments.


Asunto(s)
Membranas Artificiales , Modelos Químicos , Esteroides/química , Difusión , Análisis de los Mínimos Cuadrados , Permeabilidad
6.
Langmuir ; 34(11): 3438-3448, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29486562

RESUMEN

Toward engineering approaches that are designed to optimize the particle size, morphology, and mucoadhesion behavior of the particulate component of inhaler formulations, this paper presents the preparation, physicochemical characterization, and preliminary in vitro evaluation of multicomponent polymer-lipid systems that are based on "spray-drying engineered" α-lactose monohydrate microparticles. The formulations combine an active (budesonide) with a lung surfactant (dipalmitoylphosphatidylcholine) and with materials that are known for their desirable effects on morphology (polyvinyl alcohol), aerosolization (l-leucine), and mucoadhesion (chitosan). The effect of the composition of formulations on the morphology, distribution, and in vitro mucoadhesion profiles is presented along with "Calu-3 cell monolayers" data that indicate good cytocompatibility and also with simulated-lung-fluid data that are consistent with the therapeutically useful release of budesonide.


Asunto(s)
Budesonida/química , Portadores de Fármacos/química , Excipientes/química , Lactosa/química , Alcohol Polivinílico/química , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/toxicidad , Administración por Inhalación , Línea Celular Tumoral , Quitosano/química , Quitosano/toxicidad , Portadores de Fármacos/toxicidad , Composición de Medicamentos , Liberación de Fármacos , Excipientes/toxicidad , Femenino , Humanos , Lactosa/toxicidad , Leucina/química , Leucina/toxicidad , Masculino , Moco/química , Tamaño de la Partícula , Alcohol Polivinílico/toxicidad , Surfactantes Pulmonares/química , Surfactantes Pulmonares/toxicidad
7.
Langmuir ; 30(41): 12337-44, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25247739

RESUMEN

Toward the development of microparticulate carriers for nasal administration, N-trimethylchitosan chloride (TMC) of low molecular weight (LMW) and high molecular weight (HMW) and low degree of quaternization (16% and 27%, respectively) was co-formulated into microparticles comprising of dipalmatoylphosphatidylcholine (DPPC) and poly(lactic-co-glycolic) acid (PLGA) via the spray-drying technique. The chitosan derivatives were characterized by means of nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and Fourier transfrom infrared (FTIR) spectroscopy. The size and morphology of the produced microparticles were assessed by scanning electron microscopy (SEM), whereas their mucoadhesive properties were investigated by means of atomic force microscopy-force spectroscopy (AFM-FS). The results showed that microparticles exhibit mucoadhesion when TMC is present on their surface above a threshold of TMC (>0.3% w/w).


Asunto(s)
Quitosano/química , Portadores de Fármacos/química , Microesferas , Administración Intranasal , Quitosano/administración & dosificación , Quitosano/síntesis química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/síntesis química , Electrólitos/química , Microscopía de Fuerza Atómica , Peso Molecular , Tamaño de la Partícula , Polímeros/química , Propiedades de Superficie
8.
ACS Appl Bio Mater ; 7(5): 2710-2724, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38591866

RESUMEN

In the current study, coated microneedle arrays were fabricated by means of digital light processing (DLP) printing. Three different shapes were designed, printed, and coated with PLGA particles containing two different actives. Rivastigmine (RIV) and N-acetyl-cysteine (NAC) were coformulated via electrohydrodynamic atomization (EHDA), and they were incorporated into the PLGA particles. The two actives are administered as a combined therapy for Alzheimer's disease. The printed arrays were evaluated regarding their ability to penetrate skin and their mechanical properties. Optical microscopy and scanning electron microscopy (SEM) were employed to further characterize the microneedle structure. Confocal laser microscopy studies were conducted to construct 3D imaging of the coating and to simulate the diffusion of the particles through artificial skin samples. Permeation studies were performed to investigate the transport of the drugs across human skin ex vivo. Subsequently, a series of tape strippings were performed in an attempt to examine the deposition of the APIs on and within the skin. Light microscopy and histological studies revealed no drastic effects on the membrane integrity of the stratum corneum. Finally, the cytocompatibility of the microneedles and their precursors was evaluated by measuring cell viability (MTT assay and live/dead staining) and membrane damages followed by LDH release.


Asunto(s)
Acetilcisteína , Materiales Biocompatibles , Ensayo de Materiales , Nanopartículas , Agujas , Tamaño de la Partícula , Impresión Tridimensional , Rivastigmina , Acetilcisteína/química , Acetilcisteína/farmacología , Rivastigmina/química , Rivastigmina/farmacología , Rivastigmina/administración & dosificación , Humanos , Nanopartículas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Sistemas de Liberación de Medicamentos , Piel/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Supervivencia Celular/efectos de los fármacos
9.
Int J Pharm ; 664: 124627, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39179008

RESUMEN

3D-printed dosage forms comprised of Carbopol and Eudragit were fabricated through semi-solid extrusion, combining Enoxaparin (Enox) and the permeation enhancer SNAC in a single-step process without subsequent post-processing. Inks were characterized using rheology and Fourier-transform infrared (FTIR) spectroscopy. The stability of Enox in the fabricated dosage forms was assessed by means of Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) analysis. In vitro release studies revealed the release of Enox in a sustained manner, whereas ex vivo experiments demonstrated the mucoadhesive properties of the 3D-printed dosage forms and their ability to enhance Enox permeability across intestinal mucosa. Cellular assays (CCK-8 assay) revealed a dose- and time-dependent response following incubation with the 3D-printed dosage forms. The encapsulation of SNAC in the 3D-printed dosage forms demonstrated their capacity to increase the transcellularly transport of macromolecule across Caco-2 monolayer in a reversible manner, as confirmed by Transepithelial Resistance (TEER) measurements.


Asunto(s)
Liberación de Fármacos , Enoxaparina , Impresión Tridimensional , Comprimidos , Células CACO-2 , Humanos , Administración Oral , Enoxaparina/administración & dosificación , Enoxaparina/farmacocinética , Enoxaparina/química , Resinas Acrílicas/química , Animales , Ácidos Polimetacrílicos/química , Mucosa Intestinal/metabolismo , Masculino , Sistemas de Liberación de Medicamentos/métodos , Adhesividad , Permeabilidad , Polivinilos/química , Anticoagulantes/administración & dosificación , Anticoagulantes/farmacocinética , Anticoagulantes/química
10.
Bioorg Med Chem Lett ; 23(22): 6161-6, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24080462

RESUMEN

Liposomes of phosphatidylcholine or of dimyristoylphosphatidylcholine that incorporate bis-nido-carborane dequalinium salt are stable in physiologically relevant media and have in vitro toxicity profiles that appear to be compatible with potential therapeutic applications. These features render the structures suitable candidate boron-delivery vehicles for evaluation in the boron neutron capture therapy of cancer.


Asunto(s)
Terapia por Captura de Neutrón de Boro/métodos , Decualinio/análogos & derivados , Liposomas/administración & dosificación , Liposomas/química , Decualinio/administración & dosificación , Decualinio/química , Dimiristoilfosfatidilcolina/química , Humanos , Neoplasias/radioterapia , Fosfatidilcolinas/química , Espectrometría de Fluorescencia
11.
Biomater Adv ; 133: 112723, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35474147

RESUMEN

Periodontal disease is associated with chronic inflammation and destruction of the soft and hard tissues in the periodontium. Scaffolds that would enable cell attachment and proliferation while at the same time providing a local sustained anti-inflammatory action would be beneficial in restoring or reversing disease progression. In the current study, silk sericin, a natural protein derived from the silkworm cocoons, was electrospun with poly lactide-co-glycolic acid (PLGA) and ketoprofen, and the composite scaffolds were assessed for their physicochemical and mechanical properties, as well as their biocompatibility and in vitro anti-inflammatory action. The composite scaffolds showed an increase in their hydrophilicity and an exceptional reinforcement of their mechanical properties, compared to plain PLGA scaffolds, sustaining drug release for up to 15 days. Human gingival fibroblasts showed a favorable attachment and proliferation on the composite scaffolds as visualized with scanning electron and confocal microscopy. A significant downregulation of the pro-inflammatory markers MMP-9 and MMP-3 and an upregulation of the anti-inflammatory gene IL-10 was achieved for lipopolysaccharide-stimulated RAW 264.7 macrophages after cultivation on the composite scaffolds. The current study demonstrated that silk sericin-PLGA composite scaffolds have the potential to simultaneously accommodate cell attachment and proliferation and achieve a sustained anti-inflammatory action in the treatment of periodontal diseases.


Asunto(s)
Sericinas , Ingeniería de Tejidos , Animales , Antiinflamatorios/farmacología , Glicolatos , Humanos , Ácido Láctico/química , Ratones , Periodoncio , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Células RAW 264.7 , Sericinas/farmacología , Andamios del Tejido/química
12.
ACS Biomater Sci Eng ; 8(5): 2096-2110, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35427110

RESUMEN

Treatment failure of endodontic infections and their concurrent inflammations is commonly associated with microbial persistence and reinfection, also stemming from the anatomical restrictions of the root canal system. Aiming to address the shortcomings of current treatment options, a fast-disintegrating nanofibrous film was developed for the intracanal coadministration of an antimicrobial (ZnO nanoparticles) and an anti-inflammatory (ketoprofen) agent. The electrospun films were fabricated based on polymers that dissolve rapidly to constitute the actives readily available at the site of action, aiming to eliminate both microbial infection and inflammation. The anti-inflammatory potency of the nanofiber films was assessed in an in vitro model of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells after confirming their biocompatibility in the same cell line. The nanofiber films were found effective against Enterococcus faecalis, one of the most prominent pathogens inside the root canal space, both in vitro and ex vivo using a human tooth model experimentally infected with E. faecalis. The physical properties and antibacterial and anti-inflammatory potency of the proposed electrospun nanofiber films constitute a promising therapeutic module in the endodontic therapy of nonvital infected teeth. All manuscripts must be accompanied by an abstract. The abstract should briefly state the problem or purpose of the research, indicate the theoretical or experimental plan used, summarize the principal findings, and point out major conclusions.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Nanofibras , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Enterococcus faecalis , Humanos , Inflamación/tratamiento farmacológico , Nanofibras/uso terapéutico
13.
Adv Drug Deliv Rev ; 174: 387-405, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33965460

RESUMEN

Molecular self-assembly has forged a new era in the development of advanced biomaterials for local drug delivery and tissue engineering applications. Given their innate biocompatibility and biodegradability, self-assembling peptides (SAPs) have come in the spotlight of such applications. Short and water-soluble SAP biomaterials associated with enhanced pharmacokinetic (PK) and pharmacodynamic (PD) responses after the topical administration of the therapeutic systems, or improved regenerative potential in tissue engineering applications will be the focus of the current review. SAPs are capable of generating supramolecular structures using a boundless array of building blocks, while peptide engineering is an approach commonly pursued to encompass the desired traits to the end composite biomaterials. These two elements combined, expand the spectrum of SAPs multi-functionality, constituting them potent biomaterials for use in various biomedical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Péptidos/química , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Humanos , Solubilidad , Andamios del Tejido/química
14.
Eur J Pharm Sci ; 157: 105605, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33091570

RESUMEN

The three-dimensional (3D) printing technology has recently emerged in the pharmaceutical field, providing an array of applications for individualized dosing and elaborate formulation designs. However, an alternative asset of the 3D printing technology is the capability to imprint haptic identifiers directly onto the surface of the formulations. This approach can generate novel design concepts, that will serve specific populations for identifying the right treatment regimen, i.e., visually impaired people. Toward this direction, the fused deposition modelling (FDM) technique was investigated for manufacturing intraoral films and incorporating Braille characters on the available area. The films comprised a drug-loaded compartment and a backing layer, which are typical structural characteristics for buccal delivery. A hydrophilic polymer, i.e., hydroxypropyl methylcellulose, provided the polymer matrix for both compartments, whereas ketoprofen was incorporated in the study as model drug. The Braille-encoded texts were designed on top of the backing layer, complying with the Marburg Medium spacing convention for pharmaceutical Braille. Moreover, modifications on the standard spacing and dimension parameters were applied, to investigate the accuracy and repeatability of the FDM process. The fabricated films were subjected to a haptic evaluation study with the aid of visually impaired individuals, to assess the readability of the 3D-printed Braille-encoded text. The outcomes of the study highlighted the capacity of the FDM technology in combining novel manufacturing concepts for individualized therapies with customized services that can be provided to specific populations, as in the case of people with visual impairment.


Asunto(s)
Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Liberación de Fármacos , Humanos , Derivados de la Hipromelosa , Impresión Tridimensional
15.
Phys Chem Chem Phys ; 12(48): 15636-43, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-20589282

RESUMEN

Molecular mechanics and molecular dynamics simulations have been employed to characterise the interactions between SWNTs and biocompatible amphililic derivatives of chitosan, namely N-butyl-O-sulfate chitosan (NBSC), N-octyl-O-sulfate chitosan (NOSC) and N-palmitoyl-O-sulfate chitosan (NPSC). The computational simulations have shown that the affinity of the polymer for the hydrophobic surface of the nanotubes depends on the length of the chitosan hydrophobic pendant chain. Longer chains have a higher flexibility and therefore a better ability to wrap around the nanotubes. To underpin the theoretical calculations, experimental studies revealed that NPSC exhibits highest affinity for SWNTs with up to 66.9 ± 19.7% SWNTs stably suspended in an aqueous environment; this affinity was confirmed by the calculated binding energy of five polymer chains with a SWNT that was found to be -300.93 kcal mol(-1), the highest amongst the three polymers studied. Furthermore, the high value of cell viability after incubation with NPSC indicates that this is a good candidate for the preparation of biocompatible SWNTs dipersions that could be used in biomedical and pharmaceutical applications.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/análogos & derivados , Quitosano/química , Nanotubos de Carbono/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/farmacología , Coagulación Sanguínea/efectos de los fármacos , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Quitosano/síntesis química , Quitosano/farmacología , Humanos , Espectroscopía de Resonancia Magnética , Ensayo de Materiales , Micelas , Microscopía de Fuerza Atómica , Conformación Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Termodinámica , Agua/química
16.
Int J Pharm ; 589: 119776, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32818538

RESUMEN

Nose-to-brain delivery is an attractive route for direct drug delivery to the central nervous system (CNS), avoiding hepatic first-pass metabolism and solving blood-brain barrier passage issues. Therefore, the aim of the present study was the development of PLGA and PLGA/chitosan (chit) nanoparticles (NPs) with mucoadhesive properties, able to encapsulate ropinirole hydrochloride (RH), an anti-Parkinsonian dopaminergic agonist, and suitable to promote RH delivery across the nasal mucosa. NPs produced by nanoprecipitation showed spherical shape and a mean average size of 98.8 nm and 468.0 nm (PLGA and PLGA/chit, respectively). RH loaded PLGA/chit NPs showed a complete release of the drug in simulated nasal electrolyte solution (SNES) over the period of 24 h and increased the permeation of RH through sheep nasal mucosa by 3.22-fold in comparison to PLGA NPs. None of RH loaded NPs induced hemolysis in whole blood or the production of reactive oxygen species (ROS) in Raw 264.7 cells. On their turn, PLGA/chit NPs decreased cell viability of Raw 264.7 cells and Peripheral Blood Mononuclear Cells (PBMCs) in a concentration-dependent manner. These results revealed that, particularly PLGA/chit NPs, could be a valuable carrier for the delivery of RH to the CNS, opening a new path for Parkinson's disease therapy.


Asunto(s)
Quitosano , Nanopartículas , Animales , Portadores de Fármacos , Indoles , Leucocitos Mononucleares , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ovinos
17.
Eur J Pharm Sci ; 143: 105176, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31809907

RESUMEN

In pharmaceutical formulations, pharmacokinetic behavior of the Active Pharmaceutical Ingredients (API's) is significantly affected by their dissolution profiles. In this project, we attempted to create personalized dosage forms with osmotic properties that exhibit different API release patterns via Fused Deposition Modelling (FDM) 3D printing. Specifically, cellulose acetate was employed to create an external shell of an osmotically active core containing Diltiazem (DIL) as model drug. By removing parts of the shell (upper surface, linear lateral segments) were created dosage forms that modify their shape at specific time frames under the effect of the gradually induced osmotic pressure. Hot-Melt Extrusion (HME) was employed to fabricate two different 3DP feeding filaments, for the creation of either the shell or the osmotic core (dual-extrusion printing). Printed formulations and filaments were characterized by means of (TGA, XRD, DSC) and inspected using microscopy (optical and electron). The mechanical properties of the filaments were assessed by means of micro- and macro mechanical testing, whereas micro-Computed Tomography (µCT) was employed to investigate the volumetric changes occurring during the hydration process. XRD indicated the amorphization of DIL inside HME filaments and printed dosage forms, whereas the incorporated NaCl (osmogen) retained its crystallinity. Mechanical properties' testing confirmed the printability of produced filaments. Dissolution tests revealed that all formulations exhibited sustained release differing at the initiation time of the API dissolution (0, 120 and 360 min for the three different formulations). Finally, µCT uncovered the key structural changes associated with distinct phases of the release profile. The above results demonstrate the successful utilization of an FDM 3D printer in order to create osmotic 3D printed formulations exhibiting sustained and/or delayed release, that can be easily personalized containing API doses corresponding to each patient's specific needs.


Asunto(s)
Impresión Tridimensional , Tecnología Farmacéutica/métodos , Celulosa/análogos & derivados , Celulosa/química , Preparaciones de Acción Retardada/química , Diltiazem/química , Formas de Dosificación , Liberación de Fármacos , Excipientes/química , Ósmosis
18.
Expert Opin Drug Deliv ; 17(8): 1063-1068, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32511025

RESUMEN

The potential of fused filament fabrication (FFF) for the administration of active pharmaceutical compounds is a recent approach to develop complex and custom-made drug delivery systems (DDSs). However, the FFF technology is characterized by certain limitations, which are associated with the nature of the process, i.e., the required mechanical properties of the feedstock, as well as the thermal stability of the incorporated polymers, excipients and active compounds. Thus, hybrid DDSs have been recently introduced, to overcome these boundaries. The concept of these systems is defined by the effective coupling of FFF with conventional manufacturing technologies, as a novel pathway to expand the available pool of raw materials and pharmaceutical applications of FFF.


Asunto(s)
Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas/administración & dosificación , Excipientes/química , Polímeros/química , Impresión Tridimensional , Tecnología
19.
J Pharm Sci ; 109(9): 2757-2766, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32497597

RESUMEN

In the area of developing oromucosal drug delivery systems, mucoadhesive buccal films are the most promising formulations for either systemic or local drug delivery. The current study presents the fabrication of buccal films, by combining fused deposition modeling (FDM) and inkjet printing. Hydroxypropyl methylcellulose-based films were fabricated via FDM, containing the non-steroidal anti-inflammatory drug ketoprofen. Unidirectional release properties were achieved, by incorporating an ethyl cellulose-based backing layer. The local anesthetic lidocaine hydrochloride, combined with the permeation enhancer l-menthol, was deposited onto the film by inkjet printing. Physicochemical analysis showed alterations in the characteristics of the films, and the mucoadhesive and mechanical properties were effectively modified, due to the ink deposition on the substrates. The in vitro release data of the active pharmaceutical compounds, as well as the permeation profiles across ex vivo porcine buccal mucosa and filter-grown TR146 cells of human buccal origin, were associated with the presence of the permeation enhancer and the backing layer. The lack of any toxicity of the fabricated films was demonstrated by the MTT viability assay. This proof-of-concept study provides an alternative formulation approach of mucoadhesive buccal films, intended for the treatment of local oromucosal diseases or systemic drug delivery.


Asunto(s)
Cetoprofeno , Adhesividad , Administración Bucal , Animales , Sistemas de Liberación de Medicamentos , Humanos , Derivados de la Hipromelosa , Lidocaína , Mucosa Bucal , Porcinos
20.
Eur J Pharm Biopharm ; 156: 20-39, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32871196

RESUMEN

The research presented here shows QbD implementation for the optimisation of the key process parameters in electrohydrodynamic atomisation (EHDA). Here, the electrosprayed nanoparticles and electrospun fibers consisting of a polymeric matrix and dye. Eight formulations were assessed consisting of 5% w/v of polycaprolactone (PCL) in dichloromethane (DCM) and 5% w/v polyvinylpyrrolidone (PVP) in ethanol. A full factorial DOE was used to assess the various parameters (applied voltage, deposition distance, flow rate). Further particle and fiber analysis using Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR), particle/fiber size distribution. In addition to this in vitro release studied were carried out using fluorescein and Rhodamine B as model dyes and in vitro permeation studies were applied. The results show a significant difference in the morphology of resultant structures as well as a more rapid release profile for the PVP particles and fibers in comparison to the sustained release profiles found with PCL. In vitro drug release studies showed 100% drug release after 7 days for PCL particles and showed 100% drug release within 120 min for PVP particles. The release kinetics and the permeation study showed that the MN successfully pierced the membrane and the electrospun MN coating released a large amount of the loaded drug within 6 h. This study has demonstrated the capability of these robust MNs to encapsulate a diverse range drugs within a polymeric matrix giving rise to the potential of developed personalised medical devices.


Asunto(s)
Microinyecciones/instrumentación , Agujas , Polímeros/química , Investigación Cualitativa , Tecnología Farmacéutica/instrumentación , Liberación de Fármacos , Microinyecciones/normas , Agujas/normas , Poliésteres/química , Poliésteres/normas , Polímeros/normas , Povidona/química , Povidona/normas , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Tecnología Farmacéutica/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA