Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Oral Dis ; 28(2): 442-451, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33314501

RESUMEN

OBJECTIVES: In this study, we attempted to define the precise window of time for molar root elongation using a gain-of-function mutation of ß-catenin model. MATERIALS AND METHODS: Both the control and constitutively activated ß-catenin (CA-ß-cat) mice received a one-time tamoxifen administration (for activation of ß-catenin at newborn, postnatal day 3, or 5, or 7, or 9) and were harvested at the same stage of P21. Multiple approaches were used to define the window of time of postnatal tooth root formation. RESULTS: In the early activation groups (tamoxifen induction at newborn, or P3 or P5), there was a lack of molar root elongation in the CA-ß-cat mice. When induced at P7, the root length was slightly reduced at P21. However, the root length was essentially the same as that in the control when ß-cat activated at P9. This study indicates that root elongation occurs in a narrow time of window, which is highly sensitive to a change of ß-catenin levels. Molecular studies showed a drastic decrease in the levels of nuclear factor I-C (NFIC) and osterix (OSX), plus sharp reductions of odontoblast differentiation markers, including Nestin, dentin sialoprotein (DSP), and dentin matrix protein 1 (DMP1) at both mRNA and protein levels. CONCLUSIONS: Murine molar root elongation is precisely regulated by the Wnt/ß-catenin signaling within a narrow window of time (newborn to day 5).


Asunto(s)
Odontoblastos , Raíz del Diente , Vía de Señalización Wnt , beta Catenina , Animales , Diferenciación Celular , Ratones , Odontoblastos/fisiología , Raíz del Diente/crecimiento & desarrollo , beta Catenina/genética , beta Catenina/metabolismo
2.
BMC Biol ; 18(1): 87, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32664967

RESUMEN

BACKGROUND: The formation of supernumerary teeth is an excellent model for studying the molecular mechanisms that control stem/progenitor cell homeostasis needed to generate a renewable source of replacement cells and tissues. Although multiple growth factors and transcriptional factors have been associated with supernumerary tooth formation, the regulatory inputs of extracellular matrix in this regenerative process remains poorly understood. RESULTS: In this study, we present evidence that disrupting glycosaminoglycans (GAGs) in the dental epithelium of mice by inactivating FAM20B, a xylose kinase essential for GAG assembly, leads to supernumerary tooth formation in a pattern reminiscent of replacement teeth. The dental epithelial GAGs confine murine tooth number by restricting the homeostasis of Sox2(+) dental epithelial stem/progenitor cells in a non-autonomous manner. FAM20B-catalyzed GAGs regulate the cell fate of dental lamina by restricting FGFR2b signaling at the initial stage of tooth development to maintain a subtle balance between the renewal and differentiation of Sox2(+) cells. At the later cap stage, WNT signaling functions as a relay cue to facilitate the supernumerary tooth formation. CONCLUSIONS: The novel mechanism we have characterized through which GAGs control the tooth number in mice may also be more broadly relevant for potentiating signaling interactions in other tissues during development and tissue homeostasis.


Asunto(s)
Glicosaminoglicanos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal , Diente Supernumerario/genética , Animales , Diferenciación Celular , Ratones , Odontogénesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Células Madre/metabolismo
3.
Am J Orthod Dentofacial Orthop ; 157(4): 490-502, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32241356

RESUMEN

INTRODUCTION: This experimental study was designed to (1) produce buccal translation of maxillary premolars and (2) evaluate the effects on the buccal alveolar bone. METHODS: A randomized split-mouth study was designed based on 7 adult male beagle dogs. The experimental side received a custom cantilever appliance fabricated to produce a translatory force through the maxillary second premolar's center of resistance. The contralateral second premolar received no appliance and served as the control. The premolars underwent 6-7 weeks of buccal translation, followed by 3 weeks of fixed retention. Biweekly tooth movements were evaluated using intraoral and radiographic measurements. Pretreatment and posttreatment models were measured to assess tipping. Three-dimensional microscopic tomography was used to quantify the amount and density of buccal bone. Bone formation and turnover were assessed using fluorescent labeling, hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, and bone sialoprotein immunostaining. RESULTS: The applied force (100 g of force) translated (1.4 mm) and minimally tipped (4°) the experimental teeth. Lateral translation produced dehiscences at the mesial and distal roots, with 2.0 mm and 2.2 mm loss of vertical bone height, respectively. Bone thickness decreased significantly (P < 0.05) at the apical (∼0.4 mm), midroot (∼0.4 mm), and coronal (∼0.2 mm) levels. Fluorescent imaging, hematoxylin and eosin staining, and immunostaining for bone sialoprotein all showed new bone formation extending along the entire periosteal surface of the second premolar's buccal plate. Tartrate-resistant acid phosphatase staining demonstrated greater osteoclastic activity on the experimental than that of control sections. CONCLUSIONS: New buccal bone forms on the periosteal surface during and after tooth translation, but the amount of bone that forms is less than the amount of bone loss, resulting in a net decrease in buccal bone thickness and a loss of crestal bone.


Asunto(s)
Maxilar , Técnicas de Movimiento Dental , Animales , Diente Premolar , Perros , Masculino , Raíz del Diente , Cigoma
4.
Exp Cell Res ; 353(2): 55-62, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28223136

RESUMEN

Myofibroblasts are specialized cells that play a key role in connective tissue remodeling and reconstruction. Alpha-smooth muscle actin (α-SMA), vimentin and tenascin-C are myofibroblast phenotype, while α-SMA is the phenotypic marker. The observation that human periodontal ligament cells (hPDLCs) differentiate into myofibroblasts under orthodontic force has provided a new perspective for understanding of the biological and biomechanical mechanisms involved in orthodontic tooth movement. However, the cell-specific molecular mechanisms leading to myofibroblast differentiation in the periodontal ligament (PDL) remain unclear. In this study, we found that expression of Wnt3α, transforming growth factor-ß1 (TGF-ß1), α-SMA and tenascin-C increased in both tension and compression regions of the PDL under orthodontic load compared with unloaded control, suggesting that upregulated Wnt3α and TGF-ß1 signaling might have roles in myofibroblast differentiation in response to orthodontic force. We reveal in vitro that both Wnt3α and TGF-ß1 promote myofibroblast differentiation from hPDLCs. Dickkopf-1 (DKK1) impairs Wnt3α-induced myofibroblast differentiation in a ß-catenin-dependent manner. TGF-ß1 stimulates myofibroblast differentiation via a JNK-dependent mechanism. DKK1 has no significant effect on TGF-ß1-induced myofibroblastic phenotype.


Asunto(s)
Diferenciación Celular/genética , Ligamento Periodontal/crecimiento & desarrollo , Factor de Crecimiento Transformador beta/biosíntesis , Proteína Wnt3A/biosíntesis , Actinas/biosíntesis , Actinas/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Miofibroblastos/citología , Miofibroblastos/metabolismo , Ligamento Periodontal/metabolismo , Transducción de Señal/genética , Tenascina/biosíntesis , Tenascina/genética , Factor de Crecimiento Transformador beta/genética , Vimentina/biosíntesis , Vimentina/genética , Proteína Wnt3A/genética , beta Catenina/genética , beta Catenina/metabolismo
5.
Am J Orthod Dentofacial Orthop ; 152(1): 49-57, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28651768

RESUMEN

INTRODUCTION: Our objective was to determine whether the elevation of a full-thickness mucoperiosteal flap alone, without cortical cuts, decreases the amount of bone around teeth and accelerates mesial tooth movements. METHODS: The mandibular second premolars of 7 beagle dogs were extracted, and on a randomly selected side, a full-thickness mucoperiosteal buccal flap extending from the distal aspect of the third premolar to the mesial aspect of the first premolar was elevated. The other side did not receive flap surgery. The mandibular third premolars were protracted with orthodontic appliances. Tooth movements were analyzed biweekly over an 8-week period with calipers and radiographs. The amount and density of bone were analyzed using microcomputed tomography; bone remodeling was evaluated with histologic sections. RESULTS: Experimental tooth movements measured intraorally between cusp tips were significantly greater (25.3%) than control tooth movements. The approximate center of resistance measured radiographically also moved significantly more (about 31%) on the experimental than on the control side. The experimental premolar tipped more than the control premolar (10.5° vs 8.7°), but the difference was not statistically significant. The medullary bone volume fraction mesial to the third premolar was significantly less (9.1%) and the bone was significantly less dense (9%) on the experimental side than on the control side. Histology showed no apparent side differences in the numbers of osteoclasts and osteoblasts evident in the medullary bone. CONCLUSIONS: Elevation of a full-thickness mucoperiosteal flap alone (ie, without injury to bone) decreases the amount and density of medullary bone surrounding the tooth and accelerates tooth movement. Due to its limited effects, elevation of a flap alone to increase tooth movements may not be justified.


Asunto(s)
Periostio/cirugía , Colgajos Quirúrgicos , Técnicas de Movimiento Dental/métodos , Animales , Diente Premolar/diagnóstico por imagen , Perros , Masculino , Osteoblastos , Osteoclastos , Periostio/citología , Radiografía Dental
6.
Hum Mol Genet ; 23(12): 3085-101, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24419319

RESUMEN

Osteogenesis imperfecta (OI), or brittle bone disease, is most often caused by dominant mutations in the collagen I genes COL1A1/COL1A2, whereas rarer recessive OI is often caused by mutations in genes encoding collagen I-interacting proteins. Recently, mutations in the gene for the proteinase bone morphogenetic 1 (BMP1) were reported in two recessive OI families. BMP1 and the closely related proteinase mammalian tolloid-like 1 (mTLL1) are co-expressed in various tissues, including bone, and have overlapping activities that include biosynthetic processing of procollagen precursors into mature collagen monomers. However, early lethality of Bmp1- and Tll1-null mice has precluded use of such models for careful study of in vivo roles of their protein products. Here we employ novel mouse strains with floxed Bmp1 and Tll1 alleles to induce postnatal, simultaneous ablation of the two genes, thus avoiding barriers of Bmp1(-/-) and Tll1(-/-) lethality and issues of functional redundancy. Bones of the conditionally null mice are dramatically weakened and brittle, with spontaneous fractures-defining features of OI. Additional skeletal features include osteomalacia, thinned/porous cortical bone, reduced processing of procollagen and dentin matrix protein 1, remarkably high bone turnover and defective osteocyte maturation that is accompanied by decreased expression of the osteocyte marker and Wnt-signaling inhibitor sclerostin, and by marked induction of canonical Wnt signaling. The novel animal model presented here provides new opportunities for in-depth analyses of in vivo roles of BMP1-like proteinases in bone and other tissues, and for their roles, and for possible therapeutic interventions, in OI.


Asunto(s)
Proteína Morfogenética Ósea 1/genética , Fémur/patología , Técnicas de Silenciamiento del Gen/métodos , Osteogénesis Imperfecta/patología , Metaloproteinasas Similares a Tolloid/genética , Animales , Proteína Morfogenética Ósea 1/metabolismo , Modelos Animales de Enfermedad , Fémur/ultraestructura , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Osteogénesis Imperfecta/genética , Metaloproteinasas Similares a Tolloid/metabolismo
7.
J Exp Zool B Mol Dev Evol ; 326(1): 38-46, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26581835

RESUMEN

P16 is an acidic phosphoprotein important in both sea urchin embryonic spicule development and transient mineralization during embryogenesis, syncytium formation, and mineralization in mature urchin tooth. Anti-P16 has been used to localize P16 to the syncytial membranes and the calcite mineral. Specific amino acid sequence motifs in P16 are similar to sequences in DSPP, a protein common to all vertebrate teeth, and crucial for their mineralization. Here, we examine the effect of P16 on vertebrate fibroblastic NIH3T3 cells and osteoblastic MC3T3 cells. Transfection of NIH3T3 cells with P16 cDNA resulted in profound changes in the morphology of the cells. In culture, the transfected cells sent out long processes that contacted processes from neighboring cells forming networks or syncytia. There was a similar change in morphology in cultured osteoblastic MC3T3 cells. In addition, the MC3T3 developed numerous dendrites as found in osteocytes. Importantly, there was also a change in the expression of the osteoblast and osteocyte specific genes. MC3T3 cells transfected with P16 showed an 18-fold increase in expression of the osteocyte specific Dentin matrix protein (DMP1) gene, accompanied by decreased expression of osteoblast specific genes: Bone sialoprotein (BSP), osteocalcin (OCN), and ß-catenin decreased by 70%, 64%, and 68 %, respectively. Thus, invertebrate urchin P16 with no previously known analog in vertebrates was able to induce changes in both cell morphology and gene expression, converting vertebrate-derived osteoblast-like precursor cells to an "osteocyte-like" phenotype, an important process in bone biology. The mechanisms involved are presently under study.


Asunto(s)
Osteoblastos/fisiología , Fosfoproteínas/metabolismo , Erizos de Mar/metabolismo , Células 3T3 , Animales , Calcificación Fisiológica , Diferenciación Celular , Regulación de la Expresión Génica , Células Gigantes/citología , Ratones , Células 3T3 NIH , Osteoblastos/citología , Osteocitos/citología , Osteocitos/fisiología , Fosfoproteínas/genética , Transfección
8.
FASEB J ; 29(7): 2702-11, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25757567

RESUMEN

Understanding periodontal ligament (PDL) biology and developing an effective treatment for bone and PDL damage due to periodontitis have been long-standing aims in dental medicine. Here, we first demonstrated by cell lineage tracing and mineral double-labeling approaches that murine PDL progenitor cells display a 2- and 3-fold higher mineral deposition rate than the periosteum and endosteum at the age of 4 weeks, respectively. We next proved that the pathologic changes in osteocytes (Ocys; changes from a spindle shape to round shape with a >50% reduction in the dendrite number/length, and an increase in SOST) are the key pathologic factors responsible for bone and PDL damage in periostin-null mice (a periodontitis animal model) using a newly developed 3-dimensional FITC-Imaris technique. Importantly, we proved that deleting the Sost gene (a potent inhibitor of WNT signaling) or blocking sclerostin function by using the mAb in this periodontitis model significantly restores bone and PDL defects (n = 4-5; P < 0.05). Together, identification of the key contribution of the PDL in normal alveolar bone formation, the pathologic changes of the Ocys in periodontitis bone loss, and the novel link between sclerostin and Wnt signaling in the PDL will aid future drug development in the treatment of patients with periodontitis.


Asunto(s)
Moléculas de Adhesión Celular/deficiencia , Glicoproteínas/deficiencia , Periodontitis/terapia , Proteínas Adaptadoras Transductoras de Señales , Pérdida de Hueso Alveolar/patología , Pérdida de Hueso Alveolar/fisiopatología , Pérdida de Hueso Alveolar/terapia , Animales , Anticuerpos Monoclonales , Moléculas de Adhesión Celular/genética , Linaje de la Célula , Colágeno/metabolismo , Modelos Animales de Enfermedad , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocitos/patología , Ligamento Periodontal/patología , Periodontitis/patología , Periodontitis/fisiopatología , Fenotipo , Vía de Señalización Wnt
9.
Eur J Orthod ; 38(4): 373-8, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26446403

RESUMEN

AIM: The process of orthodontic tooth movement (OTM) involves multiple mechanisms of action including bone and extracellular matrix remodelling, although the role of periodontal ligament (PDL) in this process is largely unknown. Periostin, which is highly expressed in the PDL, is known to be responsible for mechanical stimulation in maintaining the integrity of periodontal tissues. We hypothesize that this protein plays an important role during OTM. MATERIAL AND METHODS: By using spring in 4-week-old wild-type (WT) and periostin null mice, the rate of tooth movement and mineralization were evaluated. For the evaluation, double labelling, expression of sclerostin (SOST), number of TRAP-positive cells, and quality of collagen fibrils by Sirius red were analysed and compared between these two groups. RESULTS: Our findings showed that the distance of the tooth movement and mineral deposition rates were significantly reduced in periostin null mice (P < 0.05), with a lack of expression changes in SOST as observed in the WT group. The arrangement, digestion, and integrity of collagen fibrils were impaired in periostin null mice. The number of osteoclasts reflected by expressions of TRAP (tartrate-resistant acid phosphatase) in the null mice was also significantly lower than the WT control (P < 0.05). CONCLUSION: Periostin plays a stimulatory role in both SOST and TRAP responses to OTM in the compassion site, although it is not clear if this role is direct or indirect during orthodontic loading.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Técnicas de Movimiento Dental/métodos , Proteínas Adaptadoras Transductoras de Señales , Animales , Remodelación Ósea/fisiología , Colágeno/metabolismo , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Noqueados , Osteoclastos/citología , Ligamento Periodontal/fisiología , Fosfatasa Ácida Tartratorresistente/metabolismo
10.
J Biol Chem ; 289(31): 21533-43, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24917674

RESUMEN

Dentin matrix protein 1 (DMP1) plays multiple roles in bone, tooth, phosphate homeostasis, kidney, salivary gland, reproductive cycles, and the development of cancer. In vitro studies have indicated two different biological mechanisms: 1) as a matrix protein, DMP1 interacts with αvß3 integrin and activates MAP kinase signaling; and 2) DMP1 serves as a transcription co-factor. In vivo studies have demonstrated its key role in osteocytes. This study attempted to determine whether DMP1 functions as a transcription co-factor and regulates osteoblast functions. For gene expression comparisons using adenovirus constructs, we targeted the expression of DMP1 either to the nucleus only by replacing the endogenous signal peptide with a nuclear localization signal (NLS) sequence (referred to as (NLS)DMP1) or to the extracellular matrix as the WT type (referred to as (SP)DMP1) in MC3T3 osteoblasts. High levels of DMP1 in either form greatly increased osteogenic gene expression in an identical manner. However, the targeted (NLS)DMP1 transgene driven by a 3.6-kb rat Col 1α1 promoter in the nucleus of osteoblasts and osteocytes failed to rescue the phenotyope of Dmp1-null mice, whereas the (SP)DMP1 transgene rescued the rickets defect. These studies support the notion that DMP1 functions as an extracellular matrix protein, rather than as a transcription co-factor in vivo. We also show that DMP1 continues its expression in osteoblasts during postnatal development and that the deletion of Dmp1 leads to an increase in osteoblast proliferation. However, poor mineralization in the metaphysis indicates a critical role for DMP1 in both osteoblasts and osteocytes.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Células 3T3 , Animales , Secuencia de Bases , Cartilla de ADN , Proteínas de la Matriz Extracelular/genética , Ratones , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transgenes
11.
PLoS Genet ; 8(5): e1002708, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615579

RESUMEN

Family with sequence similarity 20,-member C (FAM20C) is highly expressed in the mineralized tissues of mammals. Genetic studies showed that the loss-of-function mutations in FAM20C were associated with human lethal osteosclerotic bone dysplasia (Raine Syndrome), implying an inhibitory role of this molecule in bone formation. However, in vitro gain- and loss-of-function studies suggested that FAM20C promotes the differentiation and mineralization of mouse mesenchymal cells and odontoblasts. Recently, we generated Fam20c conditional knockout (cKO) mice in which Fam20c was globally inactivated (by crossbreeding with Sox2-Cre mice) or inactivated specifically in the mineralized tissues (by crossbreeding with 3.6 kb Col 1a1-Cre mice). Fam20c transgenic mice were also generated and crossbred with Fam20c cKO mice to introduce the transgene in the knockout background. In vitro gain- and loss-of-function were examined by adding recombinant FAM20C to MC3T3-E1 cells and by lentiviral shRNA-mediated knockdown of FAM20C in human and mouse osteogenic cell lines. Surprisingly, both the global and mineralized tissue-specific cKO mice developed hypophosphatemic rickets (but not osteosclerosis), along with a significant downregulation of osteoblast differentiation markers and a dramatic elevation of fibroblast growth factor 23 (FGF23) in the serum and bone. The mice expressing the Fam20c transgene in the wild-type background showed no abnormalities, while the expression of the Fam20c transgene fully rescued the skeletal defects in the cKO mice. Recombinant FAM20C promoted the differentiation and mineralization of MC3T3-E1 cells. Knockdown of FAM20C led to a remarkable downregulation of DMP1, along with a significant upregulation of FGF23 in both human and mouse osteogenic cell lines. These results indicate that FAM20C is a bone formation "promoter" but not an "inhibitor" in mouse osteogenesis. We conclude that FAM20C may regulate osteogenesis through its direct role in facilitating osteoblast differentiation and its systemic regulation of phosphate homeostasis via the mediation of FGF23.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas de la Matriz Extracelular , Raquitismo Hipofosfatémico Familiar , Factores de Crecimiento de Fibroblastos , Osteogénesis , Animales , Calcificación Fisiológica/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular , Línea Celular , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Placa de Crecimiento/anomalías , Humanos , Células Madre Mesenquimatosas , Ratones , Ratones Noqueados , Odontoblastos/citología , Odontoblastos/metabolismo , Osteogénesis/genética
12.
Nat Genet ; 38(11): 1310-5, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17033621

RESUMEN

The osteocyte, a terminally differentiated cell comprising 90%-95% of all bone cells, may have multiple functions, including acting as a mechanosensor in bone (re)modeling. Dentin matrix protein 1 (encoded by DMP1) is highly expressed in osteocytes and, when deleted in mice, results in a hypomineralized bone phenotype. We investigated the potential for this gene not only to direct skeletal mineralization but also to regulate phosphate (P(i)) homeostasis. Both Dmp1-null mice and individuals with a newly identified disorder, autosomal recessive hypophosphatemic rickets, manifest rickets and osteomalacia with isolated renal phosphate-wasting associated with elevated fibroblast growth factor 23 (FGF23) levels and normocalciuria. Mutational analyses showed that autosomal recessive hypophosphatemic rickets family carried a mutation affecting the DMP1 start codon, and a second family carried a 7-bp deletion disrupting the highly conserved DMP1 C terminus. Mechanistic studies using Dmp1-null mice demonstrated that absence of DMP1 results in defective osteocyte maturation and increased FGF23 expression, leading to pathological changes in bone mineralization. Our findings suggest a bone-renal axis that is central to guiding proper mineral metabolism.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Minerales/metabolismo , Osteocitos/fisiología , Osteomalacia/genética , Fosfoproteínas/genética , Raquitismo/genética , Adulto , Animales , Huesos/patología , Calcificación Fisiológica/genética , Calcificación Fisiológica/fisiología , Células Cultivadas , Análisis Mutacional de ADN , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/sangre , Humanos , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocitos/patología , Osteomalacia/sangre , Osteomalacia/patología , Fosfatos/metabolismo , Raquitismo/sangre , Raquitismo/patología
13.
J Biol Chem ; 288(10): 7204-14, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23349460

RESUMEN

Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) are essential for the formation of dentin. Previous in vitro studies have indicated that DMP1 might regulate the expression of DSPP during dentinogenesis. To examine whether DMP1 controls dentinogenesis through the regulation of DSPP in vivo, we cross-bred transgenic mice expressing normal DSPP driven by a 3.6-kb rat Col1a1 promoter with Dmp1 KO mice to generate mice expressing the DSPP transgene in the Dmp1 KO genetic background (referred to as "Dmp1 KO/DSPP Tg mice"). We used morphological, histological, and biochemical techniques to characterize the dentin and alveolar bone of Dmp1 KO/DSPP Tg mice compared with Dmp1 KO and wild-type mice. Our analyses showed that the expression of endogenous DSPP was remarkably reduced in the Dmp1 KO mice. Furthermore, the transgenic expression of DSPP rescued the tooth and alveolar bone defects of the Dmp1 KO mice. In addition, our in vitro analyses showed that DMP1 and its 57-kDa C-terminal fragment significantly up-regulated the Dspp promoter activities in a mesenchymal cell line. In contrast, the expression of DMP1 was not altered in the Dspp KO mice. These results provide strong evidence that DSPP is a downstream effector molecule that mediates the roles of DMP1 in dentinogenesis.


Asunto(s)
Dentinogénesis/genética , Proteínas de la Matriz Extracelular/genética , Fosfoproteínas/genética , Sialoglicoproteínas/genética , Anomalías Dentarias/genética , Animales , Biglicano/genética , Biglicano/metabolismo , Diferenciación Celular/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Mandíbula/diagnóstico por imagen , Mandíbula/crecimiento & desarrollo , Mandíbula/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Odontoblastos/citología , Odontoblastos/metabolismo , Fosfoproteínas/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sialoglicoproteínas/metabolismo , Diente/diagnóstico por imagen , Diente/crecimiento & desarrollo , Diente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Microtomografía por Rayos X
14.
Connect Tissue Res ; 55(4): 299-303, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24874551

RESUMEN

FAM20C is a kinase phosphorylating the small-integrin-binding ligand, N-linked glycoproteins (SIBLINGs), a group of extracellular matrix proteins that are essential for bone and dentin formation. Previously, we showed that Sox2-Cre;Fam20Cfl/fl mice had bone and dentin defects, along with hypophosphatemia and significant downregulation of dentin matrix protein 1 (DMP1). While the assumed phosphorylation failure of the SIBLINGs is likely associated with the defects in the Fam20C-deficient mice, it remains unclear if the downregulation of Dmp1 contributes to these phenotypes. In this study, we crossed 3.6 kb Col1-Dmp1 transgenic mice with 3.6 kb Col1-Cre;Fam20Cfl/fl mice to overexpress Dmp1 in the mineralized tissues of Fam20C conditional knockout (cKO) mice. X-ray, micro-computed tomography, serum biochemistry and histology analyses showed that expressing the Dmp1 transgene failed to rescue the bone and dentin defects, as well as the serum levels of FGF23 and phosphate in the Fam20C-cKO mice. These results indicated that the downregulation of Dmp1 may not directly associate with, or significantly contribute to the bone and dentin defects in the Fam20C-cKO mice.


Asunto(s)
Huesos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Dentina/metabolismo , Proteínas de la Matriz Extracelular/biosíntesis , Proteínas de la Matriz Extracelular/metabolismo , Regulación hacia Arriba , Animales , Huesos/patología , Proteínas de Unión al Calcio/genética , Dentina/patología , Regulación hacia Abajo , Proteínas de la Matriz Extracelular/genética , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/biosíntesis , Factores de Crecimiento de Fibroblastos/genética , Ratones , Ratones Noqueados , Microtomografía por Rayos X
15.
Connect Tissue Res ; 55 Suppl 1: 73-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25158185

RESUMEN

The importance of Bone Morphogenetic Proteins (BMPs) in the regulation of cell fate, differentiation and proliferation in the growth plate is well-known. However, in secondary cartilages (such as that in the temporomandibular joint) that grow by proliferation of prechondrocytes and differ in their pattern of growth, the role of BMPs is largely unexplored. To examine this question, we ablated Bmpr1a in the condylar cartilage of neonatal mice and assessed the consequences for mandibular condyle growth and organization at intervals over the ensuing 4 weeks. Bmpr1a deficiency caused significant chondrodysplasia and almost eliminated the chondrocytic phenotype in the TMJ. Expression of Sox9, collagen II, proteoglycan were all greatly reduced, and cell proliferation as detected by BrdU was almost non-existent in the knockout mice. Primary bone spongiosa formation was also disturbed and was accompanied by reduced Osterix expression. These findings strongly suggest that Bmpr1a is critical for the development and growth of the mandibular condyle via its effect on proliferation of prechondroblasts and chondrocyte differentiation.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Condrogénesis/fisiología , Cóndilo Mandibular/citología , Articulación Temporomandibular/citología , Animales , Cartílago/citología , Cartílago/metabolismo , Diferenciación Celular/fisiología , Condrogénesis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Placa de Crecimiento/metabolismo , Ratones , Ratones Noqueados
16.
Int J Biol Sci ; 20(9): 3557-3569, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993575

RESUMEN

To investigate the cell linkage between tooth dentin and bones, we studied TGF-ß roles during postnatal dentin development using TGF-ß receptor 2 (Tgfßr2) cKO models and cell lineage tracing approaches. Micro-CT showed that the early Tgfßr2 cKO exhibit short roots and thin root dentin (n = 4; p<0.01), a switch from multilayer pre-odontoblasts/odontoblasts to a single-layer of bone-like cells with a significant loss of ~85% of dentinal tubules (n = 4; p<0.01), and a matrix shift from dentin to bone. Mechanistic studies revealed a statistically significant decrease in odontogenic markers, and a sharp increase in bone markers. The late Tgfßr2 cKO teeth displayed losses of odontoblast polarity, a significant reduction in crown dentin volume, and the onset of massive bone-like structures in the crown pulp with high expression levels of bone markers and low levels of dentin markers. We thus concluded that bones and tooth dentin are in the same evolutionary linkage in which TGF-ß signaling defines the odontogenic fate of dental mesenchymal cells and odontoblasts. This finding also raises the possibility of switching the pulp odontogenic to the osteogenic feature of pulp cells via a local manipulation of gene programs in future treatment of tooth fractures.


Asunto(s)
Dentina , Odontoblastos , Receptores de Factores de Crecimiento Transformadores beta , Transducción de Señal , Factor de Crecimiento Transformador beta , Dentina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Odontoblastos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Ratones , Diente/metabolismo , Huesos/metabolismo , Microtomografía por Rayos X , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones Noqueados
17.
J Biol Chem ; 287(43): 35934-42, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22936805

RESUMEN

FAM20C is highly expressed in bone and tooth. Previously, we showed that Fam20C conditional knock-out (KO) mice manifest hypophosphatemic rickets, which highlights the crucial roles of this molecule in promoting bone formation and mediating phosphate homeostasis. In this study, we characterized the dentin, enamel, and cementum of Sox2-Cre-mediated Fam20C KO mice. The KO mice exhibited small malformed teeth, severe enamel defects, very thin dentin, less cementum than normal, and overall hypomineralization in the dental mineralized tissues. In situ hybridization and immunohistochemistry analyses revealed remarkable down-regulation of dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein in odontoblasts, along with a sharply reduced expression of ameloblastin and amelotin in ameloblasts. Collectively, these data indicate that FAM20C is essential to the differentiation and mineralization of dental tissues through the regulation of molecules critical to the differentiation of tooth-formative cells.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Odontoblastos/metabolismo , Calcificación de Dientes/fisiología , Diente/embriología , Animales , Proteínas de Unión al Calcio/genética , Diferenciación Celular/fisiología , Proteínas del Esmalte Dental/biosíntesis , Proteínas del Esmalte Dental/genética , Proteínas de la Matriz Extracelular/biosíntesis , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Homeostasis/fisiología , Ratones , Ratones Noqueados , Odontoblastos/citología , Osteogénesis/fisiología , Fosfatos/metabolismo , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , Sialoglicoproteínas/biosíntesis , Sialoglicoproteínas/genética , Diente/citología
18.
J Biol Chem ; 287(36): 30426-35, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22798071

RESUMEN

DSPP, which plays a crucial role in dentin formation, is processed into the NH(2)-terminal and COOH-terminal fragments. We believe that the proteolytic processing of DSPP is an essential activation step for its biological function in biomineralization. We tested this hypothesis by analyzing transgenic mice expressing the mutant D452A-DSPP in the Dspp-knock-out (Dspp-KO) background (referred to as "Dspp-KO/D452A-Tg" mice). We employed multipronged approaches to characterize the dentin of the Dspp-KO/D452A-Tg mice, in comparison with Dspp-KO mice and mice expressing the normal DSPP transgene in the Dspp-KO background (named Dspp-KO/normal-Tg mice). Our analyses showed that 90% of the D452A-DSPP in the dentin of Dspp-KO/D452A-Tg mice was not cleaved, indicating that D452A substitution effectively blocked the proteolytic processing of DSPP in vivo. While the expression of the normal DSPP fully rescued the dentin defects of the Dspp-KO mice, expressing the D452A-DSPP failed to do so. These results indicate that the proteolytic processing of DSPP is an activation step essential to its biological function in dentinogenesis.


Asunto(s)
Dentina/embriología , Dentinogénesis/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Fosfoproteínas/metabolismo , Proteolisis , Sialoglicoproteínas/metabolismo , Sustitución de Aminoácidos , Animales , Dentina/citología , Proteínas de la Matriz Extracelular/genética , Ratones , Ratones Noqueados , Mutación Missense , Fosfoproteínas/genética , Estructura Terciaria de Proteína , Sialoglicoproteínas/genética
19.
Eur J Oral Sci ; 121(6): 545-50, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24112131

RESUMEN

Dentin sialophosphoprotein (DSPP) plays a vital role in dentinogenesis. Previously, we showed that, in addition to dentin, DSPP is also highly expressed in alveolar bone and cellular cementum, and plays a crucial role in maintaining periodontal integrity; Dspp-deficient mice demonstrate severe periodontal defects, including alveolar bone loss, decreased cementum deposition, abnormal osteocyte morphology in the alveolar bone, and apical migration of periodontal ligament. Dentin sialophosphoprotein in dentin and bone is cleaved into NH2 -terminal and COOH-terminal fragments. Whilst our previous study showed that the proteolytic processing of DSPP is critical for dentinogenesis, it is unclear whether the post-translational cleavage of DSPP also plays an essential role in maintaining a healthy periodontium. In this study, we analyzed the periodontal tissues from transgenic mice expressing the uncleavable full-length DSPP in the Dspp knockout (Dspp-KO) background (named 'Dspp-KO/D452A-Tg mice'), in comparison with those from wild-type mice, Dspp-KO mice, and mice expressing the normal Dspp transgene in the Dspp-KO background (designated 'Dspp-KO/normal-Tg mice'). We found that transgenic expression of the normal DSPP fully rescued the periodontal defects of the Dspp-KO mice, whereas this was not the case in Dspp-KO/D452A-Tg mice. These results indicate that proteolytic processing of DSPP is essential to periodontal integrity.


Asunto(s)
Pérdida de Hueso Alveolar/metabolismo , Proceso Alveolar/metabolismo , Cemento Dental/metabolismo , Dentinogénesis/genética , Proteínas de la Matriz Extracelular/metabolismo , Ligamento Periodontal/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Pérdida de Hueso Alveolar/genética , Proceso Alveolar/patología , Animales , Cemento Dental/patología , Proteínas de la Matriz Extracelular/genética , Expresión Génica , Ratones , Ratones Noqueados , Ligamento Periodontal/patología , Fosfoproteínas/genética , Sialoglicoproteínas/genética , Microtomografía por Rayos X
20.
Eur J Oral Sci ; 121(2): 76-85, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23489896

RESUMEN

Dentin sialophosphoprotein (DSPP) is a large precursor protein that is proteolytically processed into a NH2 -terminal fragment [composed of dentin sialoprotein (DSP) and a proteoglycan form (DSP-PG)] and a COOH-terminal fragment [dentin phosphoprotein (DPP)]. In vitro studies indicate that DPP is a strong initiator and regulator of hydroxyapatite crystal formation and growth, but the role(s) of the NH2 -terminal fragment of DSPP (i.e., DSP and DSP-PG) in dentinogenesis remain unclear. This study focuses on the function of the NH2 -terminal fragment of DSPP in dentinogenesis. Here, transgenic (Tg) mouse lines expressing the NH2 -terminal fragment of DSPP driven by a 3.6-kb type I collagen promoter (Col 1a1) were generated and cross-bred with Dspp null mice to obtain mice that express the transgene but lack the endogenous Dspp (Dspp KO/DSP Tg). We found that dentin from the Dspp KO/DSP Tg mice was much thinner, more poorly mineralized, and remarkably disorganized compared with dentin from the Dspp KO mice. The fact that Dspp KO/DSP Tg mice exhibited more severe dentin defects than did the Dspp null mice indicates that the NH2 -terminal fragment of DSPP may inhibit dentin mineralization or may serve as an antagonist against the accelerating action of DPP and serve to prevent predentin from being mineralized too rapidly during dentinogenesis.


Asunto(s)
Dentina/metabolismo , Dentinogénesis/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Calcificación de Dientes/fisiología , Animales , Dentina/química , Dentinogénesis/genética , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Fosfoproteínas/química , Fosfoproteínas/genética , ARN Mensajero , Reacción en Cadena en Tiempo Real de la Polimerasa , Sialoglicoproteínas/química , Sialoglicoproteínas/genética , Calcificación de Dientes/genética , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA