Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 37(6): 967-973, 2020 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-33369335

RESUMEN

Biodegradable stents (BDSs) are the milestone in percutaneous coronary intervention(PCI). Biodegradable polymeric stents have received widespread attention due to their good biocompatibility, moderate degradation rate and degradation products without toxicity or side effects. However, due to the defects in mechanical properties of polymer materials, the clinical application of polymeric BDS has been affected. In this paper, the BDS geometric configuration design was analyzed to improve the radial strength, flexibility and reduce the shrinkage rate of biodegradable polymeric stents. And from the aspects of numerical simulation, in vitro experiment and animal experiment, the configuration design and mechanical properties of biodegradable polymeric stents were introduced in detail in order to provide further references for the development of biodegradable polymeric stents.


Asunto(s)
Stents , Implantes Absorbibles , Animales , Intervención Coronaria Percutánea , Polímeros , Diseño de Prótesis
2.
J Biomed Mater Res A ; 105(1): 23-30, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27507409

RESUMEN

The applications of poly (lactide-co-glycolide) acid (PLGA) for coating or fabricating polymeric biodegradable stents (BDSs) have drawn more attention. The fluid shear stress has been proved to affect the in vitro degradation process of PLGA membranes. During the maintenance, BDSs could be suffered different patterns of fluid shear stress, but the effect of these different patterns on the whole degradation process is unclear. In this study, in vitro degradation of PLGA membranes was examined with steady, sinusoid, and squarewave fluid shear stress patterns in 150 mL deionized water at 37°C for 20 days, emphasizing on the changes in the viscosity of the degradation solution, mechanical, and morphological properties of the samples. The unsteady fluid shear stress with the same average magnitude as the steady one accelerate the in vitro degradation process of PLGA membranes in terms of maximum fluid shear stress and "window" of effectiveness. Maximum fluid shear stress accelerates the in vitro degradation of molecular fragments that diffused out in the solution while the "window" of effectiveness affects too in the early stage. Besides, maximum fluid shear stress and "window" of effectiveness accelerates the in vitro loss of tensile modulus and ultimate strength of the PLGA membranes while the maximum fluid shear stress plays the leading role in the decrease of tensile modulus at the early degradation stage. This study could help advance the degradation design of PLGA membranes under different fluid shear stress patterns for biomedical applications like stents and drug release systems. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 23-30, 2017.


Asunto(s)
Ensayo de Materiales , Membranas Artificiales , Poliglactina 910/química , Resistencia al Corte
3.
J Biomed Mater Res A ; 104(9): 2315-24, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27124798

RESUMEN

Poly(lactide-co-glycolide) acid (PLGA) has been widely used as a biodegradable polymer material for coating stents or fabricating biodegradable stents. Its mechanism of degradation has been extensively investigated, especially with regard to how tensile and compressive loadings may affect the in vitro degradation of PLGA. Fluid shear stress is also one of the most important factors in the development of atherosclerosis and restenosis. But the effect of fluid shear stress on the degradation process is still unclear. The purpose of this study was to characterize the in vitro degradation of PLGA membranes that experienced different fluid shear stresses in 150 mL of deionized water at 37°C for 20 days. Particular emphasis was given to changes in the viscosity of the degradation solution, as well as the mechanical and morphological properties of the samples. The viscosity of the degradation solution with the mechanical loaded specimens was more severely affected than that of the control group. Increasing the fluid shear stress could accelerate the loss of the ultimate strength of PLGA membranes while it slowed down the change of the tensile elastic modulus in the early period. With regard to morphology, the surface roughness was more obviously reduced in the loaded groups. This indicated that the fluid shear stress could affect the in vitro degradation of PLGA membranes. Therefore, this study could help improve the design of PLGA membranes for biomedical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2016.


Asunto(s)
Plásticos Biodegradables/metabolismo , Membranas Artificiales , Poliglactina 910/química , Resistencia al Corte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA