Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 251(Pt 2): 118651, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479718

RESUMEN

To rapidly remove dyes from wastewater, iron-based metal-organic frameworks modified with phenolated lignin (NH2-MIL@L) were prepared by a one-step hydrothermal method. Analyses of the chemical structure and adsorption mechanism of the NH2-MIL@L proved the successful introduction of lignin and the enhancement of its adsorption sites. Compared with NH2-MIL-101-Fe without phenolated lignin, the modification with lignin increased the methyl orange (MO) adsorption rate of NH2-MIL@L. For the best adsorbent, NH2-MIL@L4, the MO adsorption efficiency in MO solution reached 95.09% within 5 min. NH2-MIL@L4 reached adsorption equilibrium within 90 min, exhibiting an MO adsorption capacity of 195.31 mg/g. The process followed pseudo-second-order kinetics and the Dubinin-Radushkevich model. MO adsorption efficiency of NH2-MIL@L4 was maintained at 89.87% after six adsorption-desorption cycles. In mixed solutions of MO and methylene blue (MB), NH2-MIL@L4 achieved an MO adsorption of 94.02% at 5 min and reached MO adsorption equilibrium within 15 min with an MO adsorption capacity of 438.6 mg/g, while the MB adsorption equilibrium was established at 90 min with an MB adsorption rate and capacity of 95.60% and 481.34 mg/g, respectively. NH2-MIL@L4 sustained its excellent adsorption efficiency after six adsorption-desorption cycles (91.2% for MO and 93.4% for MB). The process of MO adsorption by NH2-MIL@L4 followed the Temkin model and pseudo-second-order kinetics, while MB adsorption followed the Dubinin-Radushkevich model and pseudo-second-order kinetics. Electrostatic interactions, π-π interactions, hydrogen bonding, and synergistic interactions affected the MO adsorption process of NH2-MIL@L4.


Asunto(s)
Compuestos Azo , Lignina , Contaminantes Químicos del Agua , Adsorción , Lignina/química , Compuestos Azo/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Estructuras Metalorgánicas/química , Cinética , Hierro/química , Colorantes/química
2.
Int J Biol Macromol ; 267(Pt 2): 131536, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608993

RESUMEN

Cellulosic hydrogels are widely used in various applications, as they are natural raw materials and have excellent degradability. However, their poor mechanical properties restrict their practical application. This study presents a facile approach for fabricating cellulosic hydrogels with high strength by synergistically utilizing salting-out and ionic coordination, thereby inducing the collapse and aggregation of cellulose chains to form a cross-linked network structure. Cellulosic hydrogels are prepared by soaking cellulose in an Al2(SO4)3 solution, which is both strong (compressive strength of up to 16.99 MPa) and tough (compressive toughness of up to 2.86 MJ/m3). The prepared cellulosic hydrogels exhibit resistance to swelling in different solutions and good biodegradability in soil. The cellulosic hydrogels are incorporated into strain sensors for human-motion monitoring by introducing AgNWs. Thus, the study offers a promising, simple, and scalable approach for preparing strong, degradable, and anti-swelling hydrogels using common biomass resources with considerable potential for various applications.


Asunto(s)
Celulosa , Hidrogeles , Hidrogeles/química , Celulosa/química , Fuerza Compresiva , Humanos , Iones/química
3.
Int J Biol Macromol ; 237: 124200, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36972829

RESUMEN

In this work, a class of bio-based hydrogels (LN-NH-SA hydrogel) were prepared from aminated lignin and sodium alginate. The physical and chemical properties of the LN-NH-SA hydrogel were fully characterized using field emission scanning electron microscopy, thermogravimetric analysis, fourier transform infrared spectroscopy, N2 adsorption-desorption isotherms, and other techniques. LN-NH-SA hydrogels were tested for the adsorption of dyes (methyl orange and methylene blue). The LN-NH-SA@3 hydrogel showed better adsorption efficiency for MB with a maximum adsorption capacity of 388.81 mg·g-1, a bio-based adsorbent with a high adsorption capacity. The adsorption process followed the pseudo-second-order model and fitted to the Freundlich isotherm equation. More importantly, LN-NH-SA@3 hydrogel maintained 87.64 % adsorption efficiency after 5 cycles. Overall, the proposed hydrogel with environmentally friendly and low cost is promising for the absorption of dye contamination.


Asunto(s)
Hidrogeles , Contaminantes Químicos del Agua , Hidrogeles/química , Lignina , Azul de Metileno/química , Alginatos/química , Cinética , Colorantes/química , Adsorción , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
4.
Carbohydr Polym ; 311: 120786, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028884

RESUMEN

Flexible hydrogels are promising materials for the preparation of artificial intelligence electronics and wearable devices. Introducing a rigid conductive material into the hydrogels can improve their electrical conductivities. However, it may have poor interfacial compatibility with the flexible hydrogel matrix. Therefore, we prepared a hydrogel containing flexible and highly ductile liquid metal (LM). The hydrogel can be used as a strain sensor to monitor human motion. The hydrogel showed many properties (i.e., recyclability, EMI shielding properties (33.14 dB), antibacterial (100 %), strain sensitivity (gauge factor = 2.92), and self-healing) that cannot be achieved simultaneously by a single hydrogel. Furthermore, the recycling of LM and their application to hydrogel-based EMI shielding materials have not been investigated previously. Due to its excellent properties, the prepared flexible hydrogel has great potential for applications in artificial intelligence, personal healthcare, and wearable devices.


Asunto(s)
Hidrogeles , Prunella , Humanos , Inteligencia Artificial , Antibacterianos/farmacología , Celulosa , Conductividad Eléctrica , Metales
5.
Environ Sci Pollut Res Int ; 25(16): 15651-15661, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29574641

RESUMEN

A novel adsorbent, three-dimensional porous graphene/lignin/sodium alginate nanocomposite (denoted as 3D PG/L/SA) was fabricated by hydrothermal polymerization of lignin and sodium alginate in the presence of graphene oxide (GO) in an aqueous system. Fourier transform infrared spectra, thermo-gravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy were employed to characterize the morphology and structure of this novel functional PG/L/SA nanocomposite. A series of adsorption experiments for cleanup of Cd(II) and Pb(II) were conducted to investigate the effects of lignin and sodium alginate on the graphene structure. It was found that PG/L/SA showed a significant increase in adsorption capacity contrast to porous graphene (PG). The as-prepared material achieved the adsorption capacity for Cd(II) and Pb(II) of 79.88 and 226.24 mg/g, respectively. Meanwhile, the adsorption process matched well with the Langmuir isotherm model and the pseudo-second-order kinetic model. Studies were also conducted to demonstrate the applicability of the sorbent to the removal of heavy metal ions from metal smelting wastewater.


Asunto(s)
Cadmio/análisis , Tecnología Química Verde , Plomo/análisis , Nanocompuestos/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , Alginatos/química , Grafito/química , Lignina/química , Polimerizacion , Porosidad , Eliminación de Residuos Líquidos/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA