Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 211(3): 453-461, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37306457

RESUMEN

A minimized version of complement factor H (FH), designated mini-FH, was previously engineered combining the N-terminal regulatory domains (short consensus repeat [SCR]1-4) and C-terminal host-surface recognition domains (SCR19-20) of the parent molecule. Mini-FH conferred enhanced protection, as compared with FH, in an ex vivo model of paroxysmal nocturnal hemoglobinuria driven by alternative pathway dysregulation. In the current study, we tested whether and how mini-FH could block another complement-mediated disease, namely periodontitis. In a mouse model of ligature-induced periodontitis (LIP), mini-FH inhibited periodontal inflammation and bone loss in wild-type mice. Although LIP-subjected C3-deficient mice are protected relative to wild-type littermates and exhibit only modest bone loss, mini-FH strikingly inhibited bone loss even in C3-deficient mice. However, mini-FH failed to inhibit ligature-induced bone loss in mice doubly deficient in C3 and CD11b. These findings indicate that mini-FH can inhibit experimental periodontitis even in a manner that is independent of its complement regulatory activity and is mediated by complement receptor 3 (CD11b/CD18). Consistent with this notion, a complement receptor 3-interacting recombinant FH segment that lacks complement regulatory activity (specifically encompassing SCRs 19 and 20; FH19-20) was also able to suppress bone loss in LIP-subjected C3-deficient mice. In conclusion, mini-FH appears to be a promising candidate therapeutic for periodontitis by virtue of its ability to suppress bone loss via mechanisms that both include and go beyond its complement regulatory activity.


Asunto(s)
Factor H de Complemento , Periodontitis , Ratones , Animales , Factor H de Complemento/metabolismo , Vía Alternativa del Complemento , Proteínas del Sistema Complemento , Receptores de Complemento
2.
J Immunol ; 182(2): 1061-8, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19124749

RESUMEN

Factor H is the primary soluble regulator of activation of the alternative pathway of complement. It prevents activation of complement on host cells and tissues upon association with C3b and surface polyanions such as sialic acids, heparin, and other glycosaminoglycans. Here we show that interaction with polyanions causes self-association forming tetramers of the 155,000 Da glycosylated protein. Monomeric human factor H is an extended flexible protein that exhibits an apparent size of 330,000 Da, relative to globular standards, during gel filtration chromatography in the absence of polyanions. In the presence of dextran sulfate (5000 Da) or heparin an intermediate species of apparent m.w. 700,000 and a limit species of m.w. 1,400,000 were observed by gel filtration. Sedimentation equilibrium analysis by analytical ultracentrifugation indicated a monomer Mr of 163,000 in the absence of polyanions and a Mr of 607,000, corresponding to a tetramer, in the presence of less than a 2-fold molar excess of dextran sulfate. Increasing concentrations of dextran sulfate increased binding of factor H to zymosan-C3b 4.5-fold. This result was accompanied by an increase in both the decay accelerating and cofactor activity of factor H on these cells. An expressed fragment encompassing the C-terminal polyanion binding site (complement control protein domains 18-20) also exhibited polyanion-induced self-association, suggesting that the C-terminal ends of factor H mediate self-association. The results suggest that recognition of polyanionic markers on host cells and tissues by factor H, and the resulting regulation of complement activation, may involve formation of dimers and tetramers of factor H.


Asunto(s)
Polímeros/química , Aniones/química , Aniones/metabolismo , Sitios de Unión/genética , Sitios de Unión/inmunología , Cromatografía en Gel , Factor H de Complemento/biosíntesis , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Sulfato de Dextran/química , Dimerización , Regulación de la Expresión Génica/inmunología , Humanos , Fragmentos de Péptidos/biosíntesis , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/fisiología , Polielectrolitos , Polímeros/metabolismo , Estructura Terciaria de Proteína/genética , Termodinámica
3.
J Immunol ; 182(11): 7009-18, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19454698

RESUMEN

Factor H (fH) is essential for complement homeostasis in fluid-phase and on surfaces. Its two C-terminal domains (CCP 19-20) anchor fH to self-surfaces where it prevents C3b amplification in a process requiring its N-terminal four domains. In atypical hemolytic uremic syndrome (aHUS), mutations clustering toward the C terminus of fH may disrupt interactions with surface-associated C3b or polyanions and thereby diminish the ability of fH to regulate complement. To test this, we compared a recombinant protein encompassing CCP 19-20 with 16 mutants. The mutations had only very limited and localized effects on protein structure. Although we found four aHUS-linked fH mutations that decreased binding to C3b and/or to heparin (a model compound for cell surface polyanionic carbohydrates), we identified five aHUS-associated mutants with increased affinity for either or both ligands. Strikingly, these variable affinities for the individual ligands did not correlate with the extent to which all the aHUS-associated mutants were found to be impaired in a more physiological assay that measured their ability to inhibit cell surface complement functions of full-length fH. Taken together, our data suggest that disruption of a complex fH-self-surface recognition process, involving a balance of affinities for protein and physiological carbohydrate ligands, predisposes to aHUS.


Asunto(s)
Complemento C3b/metabolismo , Factor H de Complemento/metabolismo , Eritrocitos/inmunología , Síndrome Hemolítico-Urémico/genética , Heparina/metabolismo , Mutación , Animales , Células Cultivadas , Factor H de Complemento/genética , Eritrocitos/patología , Predisposición Genética a la Enfermedad , Síndrome Hemolítico-Urémico/inmunología , Síndrome Hemolítico-Urémico/patología , Humanos , Polielectrolitos , Polímeros/metabolismo , Unión Proteica/genética , Ovinos
4.
Sci Rep ; 6: 19300, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758086

RESUMEN

Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.


Asunto(s)
Inactivadores del Complemento/farmacología , Vía Clásica del Complemento/efectos de los fármacos , Proteínas de Insectos/farmacología , Psychodidae/inmunología , Psychodidae/metabolismo , Saliva/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Activación de Complemento/efectos de los fármacos , Complemento C1/antagonistas & inhibidores , Complemento C1/inmunología , Complemento C1/metabolismo , Complemento C4/antagonistas & inhibidores , Complemento C4/inmunología , Complemento C4/metabolismo , Humanos , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA