Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1861(4): 860-870, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28095317

RESUMEN

BACKGROUND: Liposomes, used to improve the therapeutic index of new and established drugs, have advanced with the insertion of active targeting. The lectin from Lotus tetragonolobus (LTL), which binds glycans containing alpha-1,2-linked fucose, reveals surface regionalized glycoepitopes in highly proliferative cells not detectable in normally growing cells. In contrast, other lectins localize the corresponding glycoepitopes all over the cell surface. LTL also proved able to penetrate the cells by an unconventional uptake mechanism. METHODS: We used confocal laser microscopy to detect and localize LTL-positive glycoepitopes and lectin uptake in two cancer cell lines. We then constructed doxorubicin-loaded liposomes functionalized with LTL. Intracellular delivery of the drug was determined in vitro and in vivo by confocal and electron microscopy. RESULTS: We confirmed the specific localization of Lotus binding sites and the lectin uptake mechanism in the two cell lines and determined that LTL-functionalized liposomes loaded with doxorubicin greatly increased intracellular delivery of the drug, compared to unmodified doxorubicin-loaded liposomes. The LTL-Dox-L mechanism of entry and drug delivery was different to that of Dox-L and other liposomal preparations. LTL-Dox-L entered the cells one by one in tiny tubules that never fused with lysosomes. LTL-Dox-L injected in mice with melanoma specifically delivered loaded Dox to the cytoplasm of tumor cells. CONCLUSIONS: Liposome functionalization with LTL promises to broaden the therapeutic potential of liposomal doxorubicin treatment, decreasing non-specific toxicity. GENERAL SIGNIFICANCE: Doxorubicin-LTL functionalized liposomes promise to be useful in the development of new cancer chemotherapy protocols.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Fabaceae/metabolismo , Lectinas/administración & dosificación , Lectinas/química , Liposomas/administración & dosificación , Liposomas/química , Animales , Sitios de Unión , Línea Celular Tumoral , Química Farmacéutica/métodos , Citoplasma/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Sistemas de Liberación de Medicamentos/métodos , Epítopos/administración & dosificación , Epítopos/química , Humanos , Lisosomas/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Ratones
2.
PLoS One ; 11(12): e0168727, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28036325

RESUMEN

Iron oxide nanoparticles (NPs) have been proposed for many biomedical applications as in vivo imaging and drug delivery in cancer treatment, but their toxicity is an ongoing concern. When NPs are intravenously administered, the endothelium represents the first barrier to tissue diffusion/penetration. However, there is little information about the biological effects of NPs on endothelial cells. In this work we showed that cobalt-ferrite (CoFe2O4) NPs affect endothelial cell integrity by increasing permeability, oxidative stress, inflammatory profile and by inducing cytoskeletal modifications. To overcome these problems, NPs have be loaded into biocompatible gels to form nanocomposite hybrid material (polysaccharide hydrogels containing magnetic NPs) that can be further conjugated with anticancer drugs to allow their release close to the target. The organic part of hybrid biomaterials is a carboxymethylcellulose (CMC) polymer, while the inorganic part consists of CoFe2O4 NPs coated with (3-aminopropyl)trimethoxysilane. The biological activity of these hybrid hydrogels was evaluated in vitro and in vivo. Our findings showed that hybrid hydrogels, instead of NPs alone, were not toxic on endothelial, stromal and epithelial cells, safe and biodegradable in vivo. In conclusion, biohydrogels with paramagnetic NPs as cross-linkers can be further exploited for antitumor drug loading and delivery systems.


Asunto(s)
Cobalto/farmacología , Células Endoteliales/efectos de los fármacos , Compuestos Férricos/farmacología , Hidrogeles/farmacología , Nanopartículas/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Materiales Biocompatibles/química , Carboximetilcelulosa de Sodio/química , Línea Celular , Cobalto/química , Sistemas de Liberación de Medicamentos/métodos , Compuestos Férricos/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidrogeles/química , Inflamación/tratamiento farmacológico , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Permeabilidad/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA