Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biotechnol Bioeng ; 117(3): 654-661, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31788780

RESUMEN

A 3D printed ultrafiltration/diafiltration (UF/DF) module is presented allowing the continuous, simultaneous concentration of retained (bio-)molecules and reduction or exchange of the salt buffer. Differing from the single-pass UF concepts known from the literature, DF operation does not require the application of several steps or units with intermediating dilution. In contrast, the developed module uses two membranes confining the section in which the molecules are concentrated while the sample is passing. Simultaneously to this concentration process, the two membranes allow a perpendicular in and outflow of DF buffer reducing the salt content in this section. The module showed the continuous concentration of a dissolved protein up to a factor of 4.6 while reducing the salt concentration down to 47% of the initial concentration along a flow path length of only 5 cm. Due to single-pass operation the module shows concentration polarization effects reducing the effective permeability of the applied membrane in case of higher concentration factors. However, because of its simple design and the capability to simultaneously run UF and DF processes in a single module, the development could be economically beneficial for small scale UF/DF applications.


Asunto(s)
Membranas Artificiales , Impresión Tridimensional , Ultrafiltración , Diseño de Equipo , Permeabilidad , Proteínas/aislamiento & purificación , Ultrafiltración/instrumentación , Ultrafiltración/métodos
2.
Macromol Rapid Commun ; 41(15): e2000314, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32608550

RESUMEN

Light induced degradation of polymers has drawn increasing interest due to the need for externally controllable modulation of materials properties. However, the portfolio of polymers, that undergo precisely controllable degradation, is limited and typically requires UV light. A novel class of backbone-degradable polymers that undergo aerobic degradation in the presence of visible light, yet remain stable against broad-spectrum light under anaerobic conditions is reported. In this design, the polymer backbone is comprised of 9,10-dialkoxyanthracene units that are selectively cleaved by singlet oxygen in the presence of green light as confirmed by NMR and UV/vis spectroscopy. The resulting polymers have been processed by electrohydrodynamic (EHD) co-jetting into bicompartmental microfibers, where one hemisphere is selectively degraded on demand.


Asunto(s)
Antracenos/química , Polímeros/química , Polímeros/efectos de la radiación , Luz , Espectroscopía de Resonancia Magnética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Oxígeno Singlete/química , Análisis Espectral , Rayos Ultravioleta
3.
Biomacromolecules ; 17(1): 280-90, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26626821

RESUMEN

We report the development of thermoresponsive 4-mercaptoethylpyridine (MEP)-based chromatographic microsphere based resins for antibody separation that show switchable release abilities by adsorbing immunoglobulins at 40 °C and releasing the proteins at 5 °C. The thermoswitchable release properties were introduced to the porous resins by the grafting of linear poly(N-isopropylacrylamide) (PNIPAM) chains synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, which were modified to possess MEP end functionalities. Adsorption of γ-globulins as a model antibody on the shortest PNIPAM-MEP (3 kDa) grafted microparticles display binding capacities of up to 20 g L(-1) at 40 °C and a significant decrease in binding capacity to less than 2.5 g L(-1) at 5 °C. By switching the temperature to 5 °C, the release of bound γ-globulins is shown to be as high as 90%. The effects of polymer chain length on the binding capacity are studied in detail and found to be critical as they influence the density of MEP functionalities on the particle surfaces.


Asunto(s)
Anticuerpos/metabolismo , Cromatografía en Agarosa/métodos , Microesferas , Sefarosa/química , gammaglobulinas/metabolismo , Resinas Acrílicas/química , Adsorción , Polimerizacion , Polímeros/síntesis química , Polímeros/química , Piridinas/química , Propiedades de Superficie , Temperatura
4.
MAbs ; 16(1): 2375798, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984665

RESUMEN

Monoclonal antibodies (mAb) and other biological drugs are affected by enzymatic polysorbate (PS) degradation that reduces product stability and jeopardizes the supply of innovative medicines. PS represents a critical surfactant stabilizing the active pharmaceutical ingredients, which are produced by recombinant Chinese hamster ovary (CHO) cell lines. While the list of potential PS-degrading CHO host cell proteins (HCPs) has grown over the years, tangible data on industrially relevant HCPs are still scarce. By means of a highly sensitive liquid chromatography-tandem mass spectrometry method, we investigated seven different mAb products, resulting in the identification of 12 potentially PS-degrading hydrolases, including the strongly PS-degrading lipoprotein lipase (LPL). Using an LPL knockout CHO host cell line, we were able to stably overexpress and purify the remaining candidate hydrolases through orthogonal affinity chromatography methods, enabling their detailed functional characterization. Applying a PS degradation assay, we found nine mostly secreted, PS-active hydrolases with varying hydrolytic activity. All active hydrolases showed a serine-histidine-aspartate/glutamate catalytical triad. Further, we subjected the active hydrolases to pH-screenings and revealed a diverse range of activity optima, which can facilitate the identification of residual hydrolases during bioprocess development. Ultimately, we compiled our dataset in a risk matrix identifying PAF-AH, LIPA, PPT1, and LPLA2 as highly critical hydrolases based on their cellular expression, detection in purified antibodies, active secretion, and PS degradation activity. With this work, we pave the way toward a comprehensive functional characterization of PS-degrading hydrolases and provide a basis for a future reduction of PS degradation in biopharmaceutical drug products.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Hidrolasas , Células CHO , Animales , Anticuerpos Monoclonales/química , Hidrolasas/metabolismo , Polisorbatos/química , Productos Biológicos/metabolismo , Humanos
5.
Biotechnol Bioeng ; 110(6): 1714-25, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23335282

RESUMEN

Cerium (IV) initiated "graft-from" polymerization reactions were employed to convert M-PVA magnetic particles into polyacrylic acid-fimbriated magnetic cation exchange supports displaying ultra-high binding capacity for basic target proteins. The modifications, which were performed at 25 mg and 2.5 g scales, delivered maximum binding capacities (Qmax ) for hen egg white lysozyme in excess of 320 mg g(-1) , combined with sub-micromolar dissociation constants (0.45-0.69 µm) and "tightness of binding" values greater than 49 L g(-1) . Two batches of polyacrylic acid-fimbriated magnetic cation exchangers were combined to form a 5 g pooled batch exhibiting Qmax values for lysozyme, lactoferrin, and lactoperoxidase of 404, 585, and 685 mg g(-1) , respectively. These magnetic cation exchangers were subsequently employed together with a newly designed "rotor-stator" type HGMF rig, in five sequential cycles of recovery of lactoferrin and lactoperoxidase from 2 L batches of a crude sweet bovine whey feedstock. Lactoferrin purification performance was observed to remain relatively constant from one HGMF cycle to the next over the five operating cycles, with yields between 40% and 49% combined with purification and concentration factors of 37- to 46-fold and 1.3- to 1.6-fold, respectively. The far superior multi-cycle HGMF performance seen here compared to that observed in our earlier studies can be directly attributed to the combined use of improved high capacity adsorbents and superior particle resuspension afforded by the new "rotor-stator" HGMS design.


Asunto(s)
Cromatografía por Intercambio Iónico/instrumentación , Cromatografía por Intercambio Iónico/métodos , Lactoferrina/aislamiento & purificación , Lactoperoxidasa/aislamiento & purificación , Imanes , Leche/química , Resinas Acrílicas/química , Adsorción , Animales , Biotecnología/instrumentación , Biotecnología/métodos , Cationes/química , Bovinos , Electroforesis en Gel de Poliacrilamida , Diseño de Equipo , Unión Proteica
6.
Langmuir ; 28(42): 14867-77, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22950722

RESUMEN

The capability of some natural molecular building blocks to self-organize into defined supramolecular architectures is a versatile tool for nanotechnological applications. Their site-selective integration into a technical context, however, still poses a major challenge. RNA-directed self-assembly of tobacco mosaic virus-derived coat protein on immobilized RNA scaffolds presents a possibility to grow nucleoprotein nanotubes in place. Two new methods for their site-selective, bottom-up assembly are introduced. For this purpose, isothiocyanate alkoxysilane was used to activate oxidic surfaces for the covalent immobilization of DNA oligomers, which served as linkers for assembly-directing RNA. Patterned silanization of surfaces was achieved (1) on oxidic surfaces via dip-pen nanolithography and (2) on polymer surfaces (poly(dimethylsiloxane)) via selective oxidization by UV-light irradiation in air. Atomic force microscopy and X-ray photoelectron spectroscopy were used to characterize the surfaces. It is shown for the first time that the combination of the mentioned structuring methods and the isothiocyanate-based chemistry is appropriate (1) for the site-selective immobilization of nucleic acids and, thus, (2) for the formation of viral nanoparticles by bottom-up self-assembly after adding the corresponding coat proteins.


Asunto(s)
Dimetilpolisiloxanos/química , Nanotubos/química , Nucleoproteínas/química , Dióxido de Silicio/química , Virus del Mosaico del Tabaco/química , ADN/química , ARN/química , Propiedades de Superficie
7.
Macromol Biosci ; 20(9): e2000154, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32639110

RESUMEN

The immobilization of enzymes into polymer hydrogels is a versatile approach to improve their stability and utility in biotechnological and biomedical applications. However, these systems typically show limited enzyme activity, due to unfavorable pore dimensions and low enzyme accessibility. Here, 3D jet writing of water-based bioinks, which contain preloaded enzymes, is used to prepare hydrogel scaffolds with well-defined, tessellated micropores. After 3D jet writing, the scaffolds are chemically modified via photopolymerization to ensure mechanical stability. Enzyme loading and activity in the hydrogel scaffolds is fully retained over 3 d. Important structural parameters of the scaffolds such as pore size, pore geometry, and wall diameter are controlled with micrometer resolution to avoid mass-transport limitations. It is demonstrated that scaffold pore sizes between 120 µm and 1 mm can be created by 3D jet writing approaching the length scales of free diffusion in the hydrogels substrates and resulting in high levels of enzyme activity (21.2% activity relative to free enzyme). With further work, a broad range of applications for enzyme-laden hydrogel scaffolds including diagnostics and enzymatic cascade reactions is anticipated.


Asunto(s)
Impresión Tridimensional , Andamios del Tejido/química , beta-Galactosidasa/metabolismo , Resinas Acrílicas/química , Adsorción , Aspergillus oryzae/enzimología , Difusión , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Hidrodinámica , Hidrogeles/química , Polietilenglicoles/química , Reología , Agua/química
8.
Colloids Surf B Biointerfaces ; 66(1): 39-44, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18583108

RESUMEN

The efficiency of binding during enzyme immobilisation does not only depend on the chemical properties of the enzyme and the matrix particle, but also on their surface potential. Zeta potential quantifies the electrostatic interactions between enzyme and matrix particles, and can therefore, be used as an indicator of the binding efficiency in the enzyme immobilisation studies. In order to establish a correlation between the zeta potential and the binding efficiency, we used CALA (Candida antarctica A-type lipase) as a model protein for immobilisation on non-porous magnetic microparticles with epoxy (M-PVA E02), carboxy (M-PVA C12) and amine (M-PVA N12) terminations. We observed maximal binding of CALA onto the M-PVA N12 beads, due to the electrostatic attraction between negatively charged protein and carrier particles with slightly positive zeta potential. The binding of CALA was lower when M-PVA E02 beads were used, followed by M-PVA C12 beads. The decreasing binding efficiency was obviously the result of increasing electrostatic repulsion between the interaction partners. This could be correlated to the increasing negative zeta potential of the magnetic particles. Moreover, the medium of suspension of the particles also makes a significant difference. We found highest specific activity of the lipase immobilised on M-PVA E02 beads in a medium concentrated buffer (0.3M). The results demonstrate a clear correlation between zeta potential and binding efficiency but no correlation between the bead related specific activity and the zeta potential. These findings are advocating the possibility of using the zeta potential as a diagnostic tool in enzyme immobilisation.


Asunto(s)
Candida/enzimología , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Lipasa/química , Lipasa/metabolismo , Alcohol Polivinílico/química , Adsorción , Concentración de Iones de Hidrógeno , Magnetismo , Microesferas , Fotometría , Alcohol Polivinílico/metabolismo , Unión Proteica , Propiedades de Superficie , Ultracentrifugación
9.
ACS Appl Mater Interfaces ; 7(26): 14279-87, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26069936

RESUMEN

The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption.


Asunto(s)
Resinas Acrílicas/química , Biotecnología/métodos , Nanopartículas de Magnetita/química , Microesferas , Unión Proteica , Proteínas/química , Proteínas/aislamiento & purificación , Temperatura
10.
J Chromatogr A ; 1403: 118-31, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26051083

RESUMEN

Continued advance of a new temperature-controlled chromatography system, comprising a column filled with thermoresponsive stationary phase and a travelling cooling zone reactor (TCZR), is described. Nine copolymer grafted thermoresponsive cation exchangers (thermoCEX) with different balances of thermoresponsive (N-isopropylacrylamide), hydrophobic (N-tert-butylacrylamide) and negatively charged (acrylic acid) units were fashioned from three cross-linked agarose media differing in particle size and pore dimensions. Marked differences in grafted copolymer composition on finished supports were sourced to base matrix hydrophobicity. In batch binding tests with lactoferrin, maximum binding capacity (qmax) increased strongly as a function of charge introduced, but became increasingly independent of temperature, as the ability of the tethered copolymer networks to switch between extended and collapsed states was lost. ThermoCEX formed from Sepharose CL-6B (A2), Superose 6 Prep Grade (B2) and Superose 12 Prep Grade (C1) under identical conditions displayed the best combination of thermoresponsiveness (qmax,50°C/qmax,10°C ratios of 3.3, 2.2 and 2.8 for supports 'A2', 'B2' and 'C1' respectively) and lactoferrin binding capacity (qmax,50°C∼56, 29 and 45mg/g for supports 'A2', 'B2' and 'C1' respectively), and were selected for TCZR chromatography. With the cooling zone in its parked position, thermoCEX filled columns were saturated with lactoferrin at a binding temperature of 35°C, washed with equilibration buffer, before initiating the first of 8 or 12 consecutive movements of the cooling zone along the column at 0.1mm/s. A reduction in particle diameter (A2→B2) enhanced lactoferrin desorption, while one in pore diameter (B2→C1) had the opposite effect. In subsequent TCZR experiments conducted with thermoCEX 'B2' columns continuously fed with lactoferrin or 'lactoferrin+bovine serum albumin' whilst simultaneously moving the cooling zone, lactoferrin was intermittently concentrated at regular intervals within the exiting flow as sharp uniformly sized peaks. Halving the lactoferrin feed concentration to 0.5mg/mL, slowed acquisition of steady state, but increased the average peak concentration factor from 7.9 to 9.2. Finally, continuous TCZR mediated separation of lactoferrin from bovine serum albumin was successfully demonstrated. While the latter's presence did not affect the time to reach steady state, the average lactoferrin mass per peak and concentration factor both fell (respectively from 30.7 to 21.4mg and 7.9 to 6.3), and lactoferrin loss in the flowthrough between elution peaks increased (from 2.6 to 12.2mg). Fouling of the thermoCEX matrix by lipids conveyed into the feed by serum albumin is tentatively proposed as responsible for the observed drops in lactoferrin binding and recovery.


Asunto(s)
Técnicas de Química Analítica/métodos , Cromatografía Líquida de Alta Presión/instrumentación , Temperatura , Acrilamidas/química , Tampones (Química) , Cationes , Técnicas de Química Analítica/instrumentación , Lactoferrina/metabolismo , Polímeros/química , Unión Proteica , Sefarosa/análogos & derivados , Sefarosa/química
11.
ACS Nano ; 9(4): 4219-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25801319

RESUMEN

The controlled synthesis of hierarchically functionalized core/multishell particles is highly desirable for applications in medicine, catalysis, and separation. Here, we describe the synthesis of hierarchically structured metal-organic framework multishells around magnetic core particles (magMOFs) via layer-by-layer (LbL) synthesis. The LbL deposition enables the design of multishell systems, where each MOF shell can be modified to install different functions. Here, we used this approach to create controlled release capsules, in which the inner shell serves as a reservoir and the outer shell serves as a membrane after postsynthetic conversion of the MOF structure to a polymer network. These capsules enable the controlled release of loaded dye molecules, depending on the surrounding media.


Asunto(s)
Portadores de Fármacos/química , Imanes/química , Nanopartículas/química , Nanotecnología/métodos , Compuestos Organometálicos/química , Polímeros/química , Cápsulas , Técnicas de Química Sintética , Colorantes/química , Preparaciones de Acción Retardada , Portadores de Fármacos/síntesis química , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química
12.
J Chromatogr A ; 1285: 97-109, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23481470

RESUMEN

An integrated approach to temperature-controlled chromatography, involving copolymer modified agarose adsorbents and a novel travelling cooling zone reactor (TCZR) arrangement, is described. Sepharose CL6B was transformed into a thermoresponsive cation exchange adsorbent (thermoCEX) in four synthetic steps: (i) epichlorohydrin activation; (ii) amine capping; (iii) 4,4'-azobis(4-cyanovaleric acid) immobilization; and 'graft from' polymerization of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid-co-N,N'-methylenebisacrylamide). FT-IR, (1)H NMR, gravimetry and chemical assays allowed precise determination of the adsorbent's copolymer composition and loading, and identified the initial epoxy activation step as a critical determinant of 'on-support' copolymer loading, and in turn, protein binding performance. In batch binding studies with lactoferrin, thermoCEX's binding affinity and maximum adsorption capacity rose smoothly with temperature increase from 20 to 50 °C. In temperature shifting chromatography experiments employing thermoCEX in thermally jacketed columns, 44-51% of the lactoferrin adsorbed at 42 °C could be desorbed under binding conditions by cooling the column to 22 °C, but the elution peaks exhibited strong tailing. To more fully exploit the potential of thermoresponsive chromatography adsorbents, a new column arrangement, the TCZR, was developed. In TCZR chromatography, a narrow discrete cooling zone (special assembly of copper blocks and Peltier elements) is moved along a bespoke fixed-bed separation columnfilled with stationary phase. In tests with thermoCEX, it was possible to recover 65% of the lactoferrin bound at 35 °C using 8 successive movements of the cooling zone at a velocity of 0.1mm/s; over half of the recovered protein was eluted in the first peak in more concentrated form than in the feed. Intra-particle diffusion of desorbed protein out of the support pores, and the ratio between the velocities of the cooling zone and mobile phase were identified as the main parameters affecting TCZR performance. In contrast to conventional systems, which rely on cooling the whole column to effect elution and permit only batch-wise operation, TCZR chromatography generates sharp concentrated elution peaks without tailing effects and appears ideally suited for continuous operation.


Asunto(s)
Cromatografía por Intercambio Iónico/instrumentación , Cromatografía por Intercambio Iónico/métodos , Lactoferrina/análisis , Sefarosa/análogos & derivados , Acrilamidas/química , Adsorción , Animales , Bovinos , Lactoferrina/química , Resonancia Magnética Nuclear Biomolecular , Polímeros/química , Sefarosa/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA