Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 42(8): e2000677, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33522026

RESUMEN

Inspired by protein polymerizations, much progress has been made in making "polymer-like" supramolecular structures from small synthetic subunits through non-covalent bonds. A few regulation mechanisms have also been explored in synthetic platforms to create supramolecular polymers and materials with dynamic properties. Herein, a type of reactive regulator that facilitates the dimerization of the monomer precursors through dynamic bonds to trigger the supramolecular assembly from small molecules in an aqueous solution is described. The supramolecular structures are crystalline in nature and the reaction coupled assembly strategy can be extended to a supramolecular assembly of aromatic amide derivatives formed in-situ. The method may be instructive for the development of supramolecular nanocrystalline materials with desired physical properties.


Asunto(s)
Compuestos Heterocíclicos , Polímeros , Sustancias Macromoleculares , Polimerizacion , Agua
2.
J Am Chem Soc ; 142(23): 10297-10301, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32453555

RESUMEN

Herein, we report the DNA-mediated self-assembly of bivalent bottlebrush polymers, a process akin to the step-growth polymerization of small molecule monomers. In these "condensation reactions", the polymer serves as a steric guide to limit DNA hybridization in a fixed direction, while the DNA serves as a functional group equivalent, connecting complementary brushes to form well-defined, one-dimensional nanostructures. The polymerization was studied using spectroscopy, microscopy, and scattering techniques and was modeled numerically. The model made predictions of the degree of polymerization and size distribution of the assembled products, and suggested the potential for branching at hybridization junctions, all of which were confirmed experimentally. This study serves as a theoretical basis for the polymer-assembly approach which has the potential to open up new possibilities for suprapolymers with controlled architecture, macromonomer sequence, and end-group functionalities.


Asunto(s)
ADN/química , Polímeros/síntesis química , Estructura Molecular , Polimerizacion , Polímeros/química
3.
Chem Soc Rev ; 47(19): 7401-7425, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30175827

RESUMEN

Synthetic polypeptides derived from the ring-opening polymerization of N-carboxyanhydrides can spontaneously fold into stable secondary structures under specific environmental conditions. These secondary structures and their dynamic transitions play an important role in regulating the properties of polypeptides in self-assembly, catalysis, polymerization, and biomedical applications. Here, we review the current strategies to modulate the secondary structures, and highlight the conformation-specific dynamic properties of synthetic polypeptides and the corresponding materials. A number of mechanistic studies elucidating the role of secondary structures are discussed, aiming to provide insights into the new designs and applications of synthetic polypeptides. We aim for this article to bring to people's attention synthetic polymers with ordered conformations, which may exhibit association behaviors and material properties that are otherwise not found in polymers without stable secondary structures.


Asunto(s)
Anhídridos/química , Ácidos Carboxílicos/química , Péptidos/química , Amiloide/química , Catálisis , Péptidos/síntesis química , Polimerizacion , Polímeros/química , Estructura Secundaria de Proteína , Soluciones
4.
Langmuir ; 32(44): 11573-11579, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27797206

RESUMEN

Polycatalytic enzyme complexes made by immobilization of industrial enzymes on polymer- or nanoparticle-based scaffolds are technologically attractive due to their recyclability and their improved substrate binding and catalytic activities. Herein, we report the synthesis of polycatalytic complexes by the immobilization of nonprocessive cellulases on the surface of colloidal polymers with a magnetic nanoparticle core and the study of their binding and catalytic activities. These polycatalytic cellulase complexes have increased binding affinity for the substrate. But due to their larger size, these complexes were unable to access to the internal surfaces of cellulose and have significantly lower binding capacity when compared to those of the corresponding free enzymes. Analysis of released soluble sugars indicated that the formation of complexes may promote the prospect of having consistent, multiple attacks on cellulose substrate. Once bound to the substrate, polycatalytic complexes tend to remain on the surface with very limited mobility due to their strong, multivalent binding to cellulose. Hence, the overall performance of polycatalytic complexes is limited by its substrate accessibility as well as mobility on the substrate surface.


Asunto(s)
Celulasas/química , Celulosa/química , Enzimas Inmovilizadas/química , Proteínas Fúngicas/química , Nanopartículas de Magnetita/química , Ácidos Polimetacrílicos/química , Celobiosa/química , Coloides , Glucosa/química , Cinética , Nanopartículas de Magnetita/ultraestructura , Unión Proteica , Especificidad por Sustrato
5.
Nat Commun ; 10(1): 5470, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31784526

RESUMEN

Enzymes provide optimal three-dimensional structures for substrate binding and the subsequent accelerated reaction. Such folding-dependent catalytic behaviors, however, are seldom mechanistically explored with reduced structural complexity. Here, we demonstrate that the α-helix, a much simpler structural motif of enzyme, can facilitate its own growth through the self-catalyzed polymerization of N-carboxyanhydride (NCA) in dichloromethane. The reversible binding between the N terminus of α-helical polypeptides and NCAs promotes rate acceleration of the subsequent ring-opening reaction. A two-stage, Michaelis-Menten-type kinetic model is proposed by considering the binding and reaction between the propagating helical chains and the monomers, and is successfully utilized to predict the molecular weights and molecular-weight distributions of the resulting polymers. This work elucidates the mechanism of helix-induced, enzyme-mimetic catalysis, emphasizes the importance of solvent choice in the discovery of new reaction type, and provides a route for rapid production of well-defined synthetic polypeptides by taking advantage of self-accelerated ring-opening polymerizations.


Asunto(s)
Anhídridos/metabolismo , Glutamatos/metabolismo , Polímeros/metabolismo , Conformación Proteica en Hélice alfa , Aminas/química , Aminas/metabolismo , Anhídridos/química , Catálisis , Enzimas/química , Enzimas/metabolismo , Glutamatos/química , Cinética , Espectroscopía de Resonancia Magnética , Cloruro de Metileno , Modelos Moleculares , Polimerizacion , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA