RESUMEN
Bovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN). The PDI-CPN protocol was evaluated in four mastitis isolates of Staphylococcus and in a hyper-biofilm-forming reference strain. The results in planktonic cultures demonstrated that PDI-CPN exhibited a bactericidal profile upon relatively low light doses (â¼9.6 J/cm2). Furthermore, following a seven-hour incubation period, no evidence of cellular reactivation was observed, indicating a highly efficient post-photodynamic inactivation effect. The successful elimination of bacterial suspensions encouraged us to test the PDI-CPN protocol on mature biofilms. Treatment using moderate light dose (â¼64.8 J/cm2) reduced biofilm biomass and metabolic activity by up to 74% and 88%, respectively. The impact of PDI-CPN therapy on biofilms was investigated using scanning electron microscopy (SEM), which revealed nearly complete removal of the extracellular matrix and cocci. Moreover, ex vivo studies conducted on bovine udder skin demonstrated the efficacy of the therapy in eliminating bacteria from these scaffolds and its potential as a prophylactic method. Notably, the histological analysis of skin revealed no signs of cellular degeneration, suggesting that the protocol is safe and effective for BM treatment. Overall, this study demonstrates the potential of PDI-CPN in treating and preventing BM pathogens. It also provides insights into the effects of PDI-CPN on bacterial growth, metabolism, and survival over extended periods, aiding the development of effective control strategies and the optimization of future treatments.
Asunto(s)
Biopelículas , Luz , Mastitis Bovina , Nanopartículas , Polímeros , Animales , Bovinos , Nanopartículas/química , Mastitis Bovina/microbiología , Mastitis Bovina/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Femenino , Polímeros/química , Polímeros/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Porfirinas/química , Porfirinas/farmacología , Staphylococcus/efectos de los fármacos , Staphylococcus/efectos de la radiación , Antibacterianos/farmacología , Antibacterianos/química , Microscopía Electrónica de Rastreo , FotoquimioterapiaRESUMEN
Hierarchical aggregates of gold nanoparticles (NPs) on different length scales were in situ generated at the surface of a bridged silsesquioxane during the process of film formation by polycondensation and solvent evaporation. A precursor of a bridged silsesquioxane based on the reaction product of (glycidoxypropyl)trimethoxysilane (2 mol) with dodecylamine (1 mol) was hydrolytically condensed in a THF solution at room temperature in the presence of formic acid, water, and variable amounts of dodecanethiol-stabilized gold NPs (average diameter of 2 nm). The initial compatibility of the precursor with gold NPs was achieved by the presence of dodecyl chains in both components. Phase separation of gold NPs accompanied by partitioning to the air-polymer interface took place driven by the polycondensation reaction and solvent evaporation. A hierarchical organization of gold NPs in the structures generated at the air-polymer interface was observed. Small body-centered cubic (bcc) crystals of about 20 nm diameter were formed in the first step, in which the 2 nm gold NPs kept their individuality (high-resolution transmission electron microscopy, field emission scanning electron microscopy, and small-angle X-ray diffraction). In the second step, bcc crystals aggregated, forming compact micrometer-sized spherical particles. Under particular evaporation rates a third step of the self-assembly process was observed where micrometer-sized particles formed fractal structures. Increasing the initial concentration of gold NPs in the formulation led to more compact fractal structures in agreement with theoretical simulations. The surface percolation of NPs in fractal structures can be the basis of useful applications.