Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Small ; 14(35): e1801612, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30084540

RESUMEN

The need for better imaging assisted cancer therapy calls for new biocompatible agents with excellent imaging and therapeutic capabilities. This study successfully fabricates albumin-cooperated human serum albumin (HSA)-GGD-ICG nanoparticles (NPs), which are comprised of a magnetic resonance (MR) contrast agent, glycyrrhetinic-acid-modified gadolinium (III)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (GGD), and a fluorescence (FL) dye, indocyanine green (ICG), for multimodal MR/FL imaging assisted cancer therapy. These HSA-GGD-ICG NPs with excellent biocompatibility are stable under physiological conditions, and exhibit enhanced T1 contrast capability and improved fluorescence imaging capacity. In vitro experiments reveal an apparent effect of the NPs in killing tumor cells under low laser irradiation, due to the enhanced photothermal conversion efficiency (≈85.1%). Importantly, multimodal MR/FL imaging clearly shows the in vivo behaviors and the efficiency of tumor accumulation of HSA-GGD-ICG NPs, as confirmed by a pharmacokinetic study. With the guidance of multimodal imaging, photothermal therapy is subsequently conducted, which demonstrates again high photothermal conversion capability for eliminating tumors without relapse. Notably, real-time monitoring of tumor ablation for prognosis and therapy evaluation is also achieved by MR imaging. This strategy of constructing nanoplatforms through albumin-mediated methods is both convenient and efficient, which would enlighten the design of multimodal imaging assisted cancer therapy for potential clinical translation.


Asunto(s)
Materiales Biocompatibles/química , Hipertermia Inducida , Imagen por Resonancia Magnética , Nanopartículas/química , Imagen Óptica , Fototerapia , Animales , Compuestos Aza/química , Línea Celular Tumoral , Terapia Combinada , Compuestos Heterocíclicos con 1 Anillo/química , Verde de Indocianina/química , Ratones , Nanopartículas/ultraestructura , Fantasmas de Imagen , Pronóstico , Albúmina Sérica Humana/química , Temperatura
2.
Nat Nanotechnol ; 18(1): 86-97, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36536041

RESUMEN

T cells play a determining role in the immunomodulation and prognostic evaluation of cancer treatments relying on immune activation. While specific biomarkers determine the population and distribution of T cells in tumours, the in situ activity of T cells is less studied. Here we designed T-cell-targeting fusogenic liposomes to regulate and quantify the activity of T cells by exploiting their surface redox status as a chemical target. The T-cell-targeting fusogenic liposomes equipped with 2,2,6,6-tetramethylpiperidine (TEMP) groups neutralize reactive oxygen species protecting T cells from oxidation-induced loss of activity. Meanwhile, the production of paramagnetic 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) radicals allows magnetic resonance imaging quantification of the T cell activity. In multiple mouse models, the T-cell-targeting fusogenic liposomes led to efficient tumour inhibition and to early prediction of radiotherapy outcomes. This study uses a chemical targeting strategy to measure the in situ activity of T cells for cancer theranostics and may provide further understanding on engineering T cells for cancer treatment.


Asunto(s)
Liposomas , Neoplasias , Animales , Ratones , Medicina de Precisión , Linfocitos T , Oxidación-Reducción , Neoplasias/diagnóstico , Neoplasias/terapia
3.
ACS Appl Mater Interfaces ; 14(3): 3784-3791, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35019261

RESUMEN

Manganese oxide nanoparticles (NPs) have attracted increasing attention recently as contrast agents (CAs) for magnetic resonance imaging (MRI). However, the clinical translation and popularization of conventional MnO NPs are hampered by their relatively poor imaging performance. Herein, we report the construction of ultrasmall MnO NPs (USMnO) via a one-pot synthetic approach that show a much better capability of T1-weighted contrast enhancement for MRI (r1 = 15.6 ± 0.4 mM-1 s-1 at 0.5 T) than MnCl2 and conventional large-sized MnO NPs (MnO-22). These USMnO are further coated with zwitterionic dopamine sulfonate (ZDS) molecules, which improves their biocompatibility and prevents nonspecific binding of serum albumins. Interestingly, USMnO@ZDS are capable of passing through the blood-brain barrier (BBB), which enables the acquisition of clear images showing brain anatomic structures with T1-weighted contrast-enhanced MRI. Therefore, our USMnO@ZDS could be used as a promising MRI CA for the flexible and accurate diagnosis of brain diseases, which is also instructive for the construction of manganese-based CA with a high MRI performance.


Asunto(s)
Encéfalo/diagnóstico por imagen , Materiales Biocompatibles Revestidos/química , Medios de Contraste/química , Compuestos de Manganeso/química , Nanopartículas/química , Óxidos/química , Animales , Imagen por Resonancia Magnética , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C
4.
Adv Healthc Mater ; 11(8): e2102079, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34898029

RESUMEN

Multicolor imaging, which maps the distribution of different targets, is important for in vivo molecular imaging and clinical diagnosis. Fluorine 19 magnetic resonance imaging (19 F MRI) is a promising technique because of unique insights without endogenous background or tissue penetration limit. Thus multicolor 19 F MRI probes, which can sense a wide variety of molecular species, are expected to help elucidate the biomolecular networks in complex biological systems. Here, a versatile model of activatable probes based on fluorinated ionic liquids (ILs) for multicolor 19 F MRI is reported. Three types of ILs at different chemical shifts are loaded in nanocarriers and sealed by three stimuli-sensitive copolymers, leading to "off" 19 F signals. The coating polymers specifically respond to their environmental stimuli, then degrade to release the loaded ILs, causing 19 F signals recovery. The nanoprobes are utilized for non-invasive detection of tumor hallmarks, which are distinguished by their individual colors in one living mouse, without interference between each other. This multicolor imaging strategy, which adopts modular construction of various ILs and stimuli-responsive polymers, will allow more comprehensive sensing of multiple biological targets, thus, opening a new realm in mechanistic understanding of complex pathophysiologic processes in vivo.


Asunto(s)
Líquidos Iónicos , Neoplasias , Animales , Imagen por Resonancia Magnética , Ratones , Polímeros
5.
Bioconjug Chem ; 21(4): 604-9, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20369817

RESUMEN

This article reported the high tumor targeting efficacy of RGD peptide labeled near-infrared (NIR) non-cadmium quantum dots (QDs). After using poly(ethylene glycol) to encapsulate InAs/InP/ZnSe QDs (emission maximum at about 800 nm), QD800-PEG dispersed well in PBS buffer with the hydrodynamic diameter (HD) of 15.9 nm and the circulation half-life of approximately 29 min. After coupling QD800-PEG with arginine-glycine-aspartic acid (RGD) or arginine-alanine-aspartic acid (RAD) peptides, we used nude mice bearing subcutaneous U87MG tumor as models to test tumor-targeted fluorescence imaging. The results indicated that the tumor uptake of QD800-RGD is much higher than those of QD800-PEG and QD800-RAD. The semiquantitative analysis of the region of interest (ROI) showed a high tumor uptake of 10.7 +/- 1.5%ID/g in mice injected with QD800-RGD, while the tumor uptakes of QD800-PEG and QD800-RAD were 2.9 +/- 0.3%ID/g and 4.0 +/- 0.5%ID/g, respectively, indicating the specific tumor targeting of QD800-RGD. The high reproducibility of bioconjunction between QDs and the RGD peptide and the feasibility of QD-RGD bioconjugates as tumor-targeted fluorescence probes warrant the successful application of QDs for in vivo molecular imaging.


Asunto(s)
Fluorescencia , Colorantes Fluorescentes , Neoplasias Experimentales/diagnóstico , Oligopéptidos , Puntos Cuánticos , Animales , Modelos Animales de Enfermedad , Femenino , Colorantes Fluorescentes/química , Humanos , Ratones , Ratones Desnudos , Oligopéptidos/síntesis química , Oligopéptidos/química , Tamaño de la Partícula , Polietilenglicoles/química
6.
J Am Chem Soc ; 130(35): 11828-33, 2008 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-18681432

RESUMEN

We report a new type of multifunctional nanomaterials, FePt@Fe2O3 yolk-shell nanoparticles, that exhibit high cytotoxicity originated from the FePt yolks and strong MR contrast enhancement resulting from the Fe2O3 shells. Encouraged by the recently observed high cytotoxicity of FePt@CoS2 yolk-shell nanoparticles, we used Fe2O3 to replace CoS2 as the shells to further explore the applications of the yolk-shell nanostructures. The ultralow IC50 value (238 +/- 9 ng of Pt/mL) of FePt@Fe2O3 yolk-shell nanoparticles likely originates from the fact that the slow oxidation and release of FePt yolks increases the cytotoxicity. Moreover, compared with two commercial magnetic resonance imaging (MRI) contrast agents, MION and Sinerem, the FePt@Fe2O3 yolk-shell nanoparticle showed stronger contrast enhancement according to their apparent transverse relaxivity values (r2* = 3.462 (microg/mL)(-1) s(-1)). The bifunctional FePt@Fe2O3 yolk-shell nanoparticles may serve both as an MRI contrast agent and as a potent anticancer drug. This work indicates that these unique yolk-shell nanoparticles may ultimately lead to new designs of multifunctional nanostructures for nanomedicine.


Asunto(s)
Antineoplásicos/química , Cáscara de Huevo/química , Yema de Huevo/química , Nanopartículas/química , Animales , Materiales Biocompatibles/química , Medios de Contraste/química , Compuestos Férricos/química , Células HeLa , Humanos , Nanopartículas del Metal/química , Platino (Metal)/química
7.
ACS Nano ; 8(4): 3876-83, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24654734

RESUMEN

Multifunctional nanocomposites have the potential to integrate sensing, diagnostic, and therapeutic functions into a single nanostructure. Herein, we synthesize Fe3O4@polydopamine core-shell nanocomposites (Fe3O4@PDA NCs) through an in situ self-polymerization method. Dopamine, a melanin-like mimic of mussel adhesive proteins, can self-polymerize to form surface-adherent polydopamine (PDA) films onto a wide range of materials including Fe3O4 nanoparticles used here. In such nanocomposites, PDA provides a number of advantages, such as near-infrared absorption, high fluorescence quenching efficiency, and a surface for further functionalization with biomolecules. We demonstrate the ability of the Fe3O4@PDA NCs to act as theranostic agents for intracellular mRNA detection and multimodal imaging-guided photothermal therapy. This work would stimulate interest in the use of PDA as a useful material to construct multifunctional nanocomposites for biomedical applications.


Asunto(s)
Indoles/química , Espacio Intracelular/metabolismo , Nanocompuestos/uso terapéutico , Nanopartículas/química , Polímeros/química , Radioterapia Guiada por Imagen/métodos , Humanos , Células MCF-7 , Imagen por Resonancia Magnética , Nanocompuestos/química , Técnicas Fotoacústicas , Polimerizacion , ARN Mensajero/genética , ARN Mensajero/metabolismo , Propiedades de Superficie , Temperatura
8.
Nanoscale ; 5(17): 8098-104, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23884164

RESUMEN

This report illustrates a new strategy of designing a T1-T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO-stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1-T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability.


Asunto(s)
Compuestos Férricos/química , Gadolinio/química , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/química , Medios de Contraste/toxicidad , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HCT116 , Humanos , Imagen por Resonancia Magnética , Microscopía Confocal , Nanopartículas/toxicidad , Polietileneimina/química , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Transfección
9.
Biomaterials ; 32(8): 2141-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21147502

RESUMEN

This article reports the affibody-based nanoprobes specifically target and image human epidermal growth factor receptor type 2 (HER2)-expressing cells and tumors. The affibody molecules are a promising class of targeting ligands with simple, robust, and precise structure and high affinity. Using near-infrared (NIR) quantum dots (QDs) and iron oxide (IO) nanoparticles as two representative nanomaterials, we designed anti-HER2 affibody molecules with a N-terminus cysteine residue (Cysteine-Z(HER2:342)) and precisely conjugated with maleimide-functionalized nanoparticles to make nanoparticle-affibody conjugates. The in vitro and in vivo study showed the conjugates are highly specific to target and image HER2-expressing cells and tumors. This work indicated the nanoparticle-affibody conjugates may be excellent candidates as targeting probes for molecular imaging and diagnosis.


Asunto(s)
Nanopartículas del Metal/química , Imagen Molecular/métodos , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Desnudos , Microscopía Fluorescente/métodos , Modelos Moleculares , Neoplasias/patología , Polietilenglicoles/química , Puntos Cuánticos , Receptor ErbB-2/genética , Proteínas Recombinantes de Fusión/genética , Distribución Tisular
10.
Biomaterials ; 31(11): 3016-22, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20092887

RESUMEN

Engineered nanoparticles with theranostic functions have attracted a lot of attention for their potential role in the dawning era of personalized medicine. Iron oxide nanoparticles (IONPs), with their advantages of being non-toxic, biodegradable and inexpensive, are candidate platforms for the buildup of theranostic nanostructures; however, progress in using them has been limited largely due to inefficient drug loading and delivery. In the current study, we utilized dopamine to modify the surface of IONPs, yielding nanoconjugates that can be easily encapsulated into human serum albumin (HSA) matrices (clinically utilized drug carriers). This nanosystem is well-suited for dual encapsulation of IONPs and drug molecules, because the encapsulation is achieved in a way that is similar to common drug loading. To assess the biophysical characteristics of this novel nanosystem, the HSA coated IONPs (HSA-IONPs) were dually labeled with (64)Cu-DOTA and Cy5.5, and tested in a subcutaneous U87MG xenograft mouse model. In vivo positron emission tomography (PET)/near-infrared fluorescence (NIRF)/magnetic resonance imaging (MRI) tri-modality imaging, and ex vivo analyses and histological examinations were carefully conducted to investigate the in vivo behavior of the nanostructures. With the compact HSA coating, the HSA-IONPs manifested a prolonged circulation half-life; more impressively, they showed massive accumulation in lesions, high extravasation rate, and low uptake of the particles by macrophages at the tumor area.


Asunto(s)
Materiales Biocompatibles/química , Compuestos Férricos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal/química , Tomografía de Emisión de Positrones/métodos , Espectroscopía Infrarroja Corta/métodos , Animales , Carbocianinas/química , Línea Celular Tumoral , Quelantes/química , Radioisótopos de Cobre/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Ensayo de Materiales , Ratones , Ratones Desnudos , Estructura Molecular , Trasplante de Neoplasias , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Trasplante Heterólogo
11.
J Am Chem Soc ; 128(41): 13358-9, 2006 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-17031939

RESUMEN

We report on the use of bisphosphonate to functionalize Fe3O4 magnetic nanoparticles via dopamine (DA) linkage. Using tetraethyl-3-aminopropane-1,1-bisphosphonate (BP) as the functional molecule, we created a system with an Fe3O4-DA-BP nanostructure, which possesses high specificity for removing uranyl ions from water or blood. This work demonstrates that magnetic nanoparticles, combined with specific receptor-ligand interactions, promise a sensitive and rapid platform for the detection, recovery, and decorporation of metal toxins from biological environment.


Asunto(s)
Materiales Biocompatibles/química , Difosfonatos/química , Óxido Ferrosoférrico/química , Nanopartículas/química , Nanotecnología/métodos , Uranio/aislamiento & purificación , Microscopía Electrónica de Transmisión , Espectrometría de Fluorescencia , Uranio/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA