Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Virol ; 95(7): e28939, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37409616

RESUMEN

Some children infected with hand, foot, and mouth disease (HFMD) caused by enterovirus 71 (EV71) progressed to severe disease with various neurological complications in the short term, with a poor prognosis and high mortality. Studies had revealed that RNA N6 -methyladenosine (m6 A) modification had a significant impact on EV71 replication, but it was unknown how m6 A modification regulated the host cell's innate immune response brought on by EV71 infection. We used MeRIP-seq (methylation RNA immunoprecipitation sequencing), RNA-seq (RNA sequencing), cell transfection, and other techniques. MeRIP-seq and RNA-seq results showed the m6 A methylation modification map of control and EV71-infected groups of RD cells. And multilevel validation indicated that decreased expression of demethylase FTO (fat mass and obesity-associated protein) was responsible for the elevated total m6 A modification levels in EV71-infected RD cells and that thioredoxin interacting protein (TXNIP) may be a target gene for demethylase FTO action. Further functional experiments showed that demethylase knockdown of FTO promoted TXNIP expression, activation of NLRP3 inflammasome and promoted the release of proinflammatory factors in vitro, and the opposite result occurred with demethylase FTO overexpression. And further tested in an animal model of EV71 infection in vitro, with results consistent with in vitro. Our findings elucidated that depletion of the demethylase FTO during EV71 infection increased the m6 A modification level of TXNIP mRNA 3' untranslated region (UTR), enhancing mRNA stability, and promoting TXNIP expression. Consequently, the NLRP3 inflammasome was stimulated, leading to the release of proinflammatory factors and facilitating HFMD progression.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Enterovirus/genética , Enterovirus Humano A/genética , Enfermedad de Boca, Mano y Pie/genética , Inflamasomas/genética , Metilación , Proteína con Dominio Pirina 3 de la Familia NLR/genética , ARN , Humanos
2.
Front Microbiol ; 12: 663019, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220748

RESUMEN

The outbreaks of enterovirus 71 (EV71)-associated hand, foot, and mouth disease (HFMD) have emerged as an emergency of global health due to its association with fatal encephalitis and subsequent neurogenic pulmonary edema; however, the molecular characteristics and pathological features underlying EV71-associated encephalitis and pulmonary edema remain largely unknown. In this study, we performed a proteomic analysis of fresh brain and lung tissues from EV71-infected mice at 7 days post infection. We detected a perturbed expression of 148 proteins in the brain and 78 proteins in the lung after EV71 expression. Further analysis showed that the dysregulated proteins in the brain are involved in a variety of fundamental biological pathways, including complement and coagulation cascades, innate and adaptive immune responses, platelet activation, and nitrogen metabolism, and those proteins in the lung participate in innate and adaptive immune responses, phagosome, arginine biosynthesis, and hypoxia-inducible factor 1 signaling pathway. Our results suggested that immune activation, complement and coagulation dysfunction, platelet activation, imbalance of nitrogen metabolism, and hypoxia could be involved in the pathogenesis of EV71, which explains the major clinical manifestation of hyperinflammatory status of severe HFMD cases. Our study provides further understanding of the molecular basis of EV71 pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA