Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Periodontal Res ; 59(3): 512-520, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38243688

RESUMEN

BACKGROUND: Periodontitis is a chronic inflammatory disease defined by the pathologic loss of the periodontal ligament and alveolar bone in relation to aging. Although clinical cohort studies reported that periodontitis is significantly elevated in males compared to females, emerging evidence indicates that females with dementia are at a greater risk for periodontitis and decreased alveolar bone. OBJECTIVE: This study aimed to evaluate whether dementia is a potential sex-dependent risk factor for periodontal bone loss using an experimental model of periodontitis induced in the triple transgenic (3x-Tg) dementia-like mice and clinical samples collected from senior 65 plus age patients with diagnosed dementia. MATERIALS AND METHODS: We induced periodontitis in dementia-like triple-transgenic (3x-Tg) male and female mice and age-matched wild-type (WT) control mice by ligature placement. Then, alveolar bone loss and osteoclast activity were evaluated using micro-CT and in situ imaging assays. In addition, we performed dental examinations on patients with diagnosed dementia. Finally, dementia-associated Aß42 and p-Tau (T181) and osteoclastogenic receptor activator of nuclear factor kappa-Β ligand (RANKL) in gingival crevicular fluid (GCF) collected from mice and clinical samples were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Alveolar bone loss and in situ osteoclast activity were significantly elevated in periodontal lesions of 3x-Tg females but not males, compared to wild-type control mice. In addition, we also observed that the probing pocket depth (PPD) was also significantly elevated in female patients with dementia. Using ELISA assay, we observed that females had elevated levels of osteoclastogenic RANKL and dementia-associated Aß42 and p-Tau (T181) in the GCF collected from experimental periodontitis lesions and clinical samples. CONCLUSION: Altogether, we demonstrate that females with dementia have an increased risk for periodontal bone loss compared to males.


Asunto(s)
Pérdida de Hueso Alveolar , Demencia , Modelos Animales de Enfermedad , Ratones Transgénicos , Periodontitis , Ligando RANK , Animales , Femenino , Pérdida de Hueso Alveolar/patología , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/metabolismo , Masculino , Ratones , Demencia/etiología , Humanos , Anciano , Ligando RANK/análisis , Ligando RANK/metabolismo , Factores Sexuales , Periodontitis/complicaciones , Periodontitis/patología , Microtomografía por Rayos X , Osteoclastos/patología , Péptidos beta-Amiloides/metabolismo , Líquido del Surco Gingival/química , Fragmentos de Péptidos/análisis , Factores de Riesgo
2.
J Cell Mol Med ; 26(10): 2841-2851, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35429112

RESUMEN

Emerging studies indicate that intracellular eukaryotic ceramide species directly activate cathepsin B (CatB), a lysosomal-cysteine-protease, in the cytoplasm of osteoclast precursors (OCPs) leading to elevated RANKL-mediated osteoclastogenesis and inflammatory osteolysis. However, the possible impact of CatB on osteoclastogenesis elevated by non-eukaryotic ceramides is largely unknown. It was reported that a novel class of phosphoglycerol dihydroceramide (PGDHC), produced by the key periodontal pathogen Porphyromonas gingivalis upregulated RANKL-mediated osteoclastogenesis in vitro and in vivo. Therefore, the aim of this study was to evaluate a crosstalk between host CatB and non-eukaryotic PGDHC on the promotion of osteoclastogenesis. According to a pulldown assay, high affinity between PGDHC and CatB was observed in RANKL-stimulated RAW264.7 cells in vitro. It was also demonstrated that PGDHC promotes enzymatic activity of recombinant CatB protein ex vivo and in RANKL-stimulated osteoclast precursors in vitro. Furthermore, no or little effect of PGDHC on the RANKL-primed osteoclastogenesis was observed in male and female CatB-knock out mice compared with their wild type counterparts. Altogether, these findings demonstrate that bacterial dihydroceramides produced by P. gingivalis elevate RANKL-primed osteoclastogenesis via direct activation of intracellular CatB in OCPs.


Asunto(s)
Osteogénesis , Porphyromonas gingivalis , Animales , Catepsina B/metabolismo , Diferenciación Celular , Ceramidas/metabolismo , Femenino , Lisosomas/metabolismo , Masculino , Ratones , Osteoclastos/metabolismo , Osteogénesis/genética , Ligando RANK/metabolismo , Ligando RANK/farmacología
3.
Mol Oral Microbiol ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902168

RESUMEN

Macrophage colony-stimulating factor (M-CSF) and interleukin-34 (IL-34) are ligands for the colony-stimulating factor-1  receptor (CSF-1r) expressed on the surface of monocyte/macrophage lineage cells. The importance of coordinated signaling between M-CSF/receptor activator of the nuclear factor kappa-Β ligand (RANKL) in physiological and pathological bone remodeling and alveolar bone loss in response to oral bacterial colonization is well established. However, our knowledge about the IL-34/RANKL signaling in periodontal bone loss remains limited. Recently published cohort studies have demonstrated that the expression patterns of IL-34 are dramatically elevated in gingival crevicular fluid collected from patients with periodontitis. Therefore, the present study aims to evaluate the effects of IL-34 on osteoclastogenesis in vitro and in experimental ligature-mediated model of periodontitis using male mice. Our initial in vitro study demonstrated increased RANKL-induced osteoclastogenesis of IL-34-primed osteoclast precursors (OCPs) compared to M-CSF-primed OCPs. Using an experimental model of ligature-mediated periodontitis, we further demonstrated elevated expression of IL-34 in periodontal lesions. In contrast, M-CSF levels were dramatically reduced in these periodontal lesions. Furthermore, local injections of mouse recombinant IL-34 protein significantly elevated cathepsin K activity, increased the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and promoted alveolar bone loss in periodontitis lesions. In contrast, anti-IL-34 neutralizing monoclonal antibody significantly reduced the level of alveolar bone loss and the number of TRAP-positive osteoclasts in periodontitis lesions. No beneficial effects of locally injected anti-M-CSF neutralizing antibody were observed in periodontal lesions. This study illustrates the role of IL-34 in promoting alveolar bone loss in periodontal lesions and proposes the potential of anti-IL34 monoclonal antibody (mAb)-based therapeutic regimens to suppress alveolar bone loss in periodontitis lesions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA