Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256239

RESUMEN

Ropinirole is a non-ergolinic dopamine agonist used to manage Parkinson's disease and it is characterized by poor oral bioavailability. This study aimed to design and develop advanced drug delivery systems composed of poloxamer 407, a non-ionic surfactant (Tween 80), and cyclodextrins (methyl-ß-CD or hydroxy-propyl-ß-CD) for possible brain targeting of ropinirole after nasal administration for the treatment of Parkinson's disease. The hybrid systems were formed by the thin-film hydration method, followed by an extensive physicochemical and morphological characterization. The in vitro cytotoxicity of the systems on HEK293 cell lines was also tested. In vitro release and ex vivo mucosal permeation of ropinirole were assessed using Franz cells at 34 °C and with phosphate buffer solution at pH 5.6 in the donor compartment, simulating the conditions of the nasal cavity. The results indicated that the diffusion-controlled drug release exhibited a progressive increase throughout the experiment, while a proof-of-concept experiment on ex vivo permeation through rabbit nasal mucosa revealed a better performance of the prepared hybrid systems in comparison to ropinirole solution. The encouraging results in drug release and mucosal permeation indicate that these hybrid systems can serve as attractive platforms for effective and targeted nose-to-brain delivery of ropinirole with a possible application in Parkinson's disease. Further ex vivo and in vivo studies to support the results of the present work are ongoing.


Asunto(s)
Indoles , Enfermedad de Parkinson , Surfactantes Pulmonares , Humanos , Animales , Conejos , Tensoactivos , Polímeros , Células HEK293 , Enfermedad de Parkinson/tratamiento farmacológico , Encéfalo , Lipoproteínas , Mucosa Nasal
2.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999015

RESUMEN

Rehabilitation of fully or partially edentulous patients with dental implants represents one of the most frequently used surgical procedures. The work of Branemark, who observed that a piece of titanium embedded in rabbit bone became firmly attached and difficult to remove, introduced the concept of osseointegration and revolutionized modern dentistry. Since then, an ever-growing need for improved implant materials towards enhanced material-tissue integration has emerged. There is a strong belief that nanoscale materials will produce a superior generation of implants with high efficiency, low cost, and high volume. The aim of this review is to explore the contribution of nanomaterials in implantology. A variety of nanomaterials have been proposed as potential candidates for implant surface customization. They can have inherent antibacterial properties, provide enhanced conditions for osseointegration, or act as reservoirs for biomolecules and drugs. Titania nanotubes alone or in combination with biological agents or drugs are used for enhanced tissue integration in dental implants. Regarding immunomodulation and in order to avoid implant rejection, titania nanotubes, graphene, and biopolymers have successfully been utilized, sometimes loaded with anti-inflammatory agents and extracellular vesicles. Peri-implantitis prevention can be achieved through the inherent antibacterial properties of metal nanoparticles and chitosan or hybrid coatings bearing antibiotic substances. For improved corrosion resistance various materials have been explored. However, even though these modifications have shown promising results, future research is necessary to assess their clinical behavior in humans and proceed to widespread commercialization.


Asunto(s)
Implantes Dentales , Oseointegración , Propiedades de Superficie , Titanio , Humanos , Animales , Oseointegración/efectos de los fármacos , Titanio/química , Nanoestructuras/química , Antibacterianos/farmacología , Antibacterianos/química
3.
J Liposome Res ; 33(3): 214-233, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36856671

RESUMEN

Nanovaccines have shown to be effective, and this is the reason they are preferred than conventional vaccines. The scope of this review is to describe the role, mechanisms, and advantages of nano vaccines based on lipids, and present the most important types, their physicochemical characteristics, as well as their challenges. The most important categories of lipid nano-vaccines are liposomal nano vaccines and (virus-lipid nanoparticles (NPs)/virosomes. Examples of vaccine formulations from each category are presented and analyzed below, focusing on their structure and physicochemical characteristics. In all cases, a nanoscale platform is used, enriched with adjuvants, antigens, and other helping agents to trigger immune response process and achieve cell targeting, and eventually immunity against the desired disease. The exact mechanism of action of each vaccine is not always completely known or understood. Physicochemical characteristics, such as particle size, morphology/shape, and zeta potential are also mentioned as they seem to affect the properties and mechanism of action of the vaccine formulation.


Asunto(s)
Nanopartículas , Vacunas , Liposomas/química , Vacunas/química , Nanopartículas/química , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Tamaño de la Partícula , Lípidos/química
4.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430294

RESUMEN

The aim of this research was to prepare novel block copolymer-surfactant hybrid nanosystems using the triblock copolymer Pluronic 188, along with surfactants of different hydrophilic to lipophilic balance (HLB ratio-which indicates the degree to which a surfactant is hydrophilic or hydrophobic) and thermotropic behavior. The surfactants used were of non-ionic nature, of which Tween 80® and Brij 58® were more hydrophilic, while Span 40® and Span 60® were more hydrophobic. Each surfactant has unique innate thermal properties and an affinity towards Pluronic 188. The nanosystems were formulated through mixing the pluronic with the surfactants at three different ratios, namely 90:10, 80:20, and 50:50, using the thin-film hydration technique and keeping the pluronic concentration constant. The physicochemical characteristics of the prepared nanosystems were evaluated using various light scattering techniques, while their thermotropic behavior was characterized via microDSC and high-resolution ultrasound spectroscopy. Microenvironmental parameters were attained through the use of fluorescence spectroscopy, while the cytotoxicity of the nanocarriers was studied in vitro. The results indicate that the combination of Pluronic 188 with the above surfactants was able to produce hybrid homogeneous nanoparticle populations of adequately small diameters. The different surfactants had a clear effect on physicochemical parameters such as the size, hydrodynamic diameter, and polydispersity index of the final formulation. The mixing of surfactants with the pluronic clearly changed its thermotropic behavior and thermal transition temperature (Tm) and highlighted the specific interactions that occurred between the different materials, as well as the effect of increasing the surfactant concentration on inherent polymer characteristics and behavior. The formulated nanosystems were found to be mostly of minimal toxicity. The obtained results demonstrate that the thin-film hydration method can be used for the formulation of pluronic-surfactant hybrid nanoparticles, which in turn exhibit favorable characteristics in terms of their possible use in drug delivery applications. This investigation can be used as a road map for the selection of an appropriate nanosystem as a novel vehicle for drug delivery.


Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Tensoactivos/química , Poloxámero/química , Excipientes , Polisorbatos , Polímeros/química , Lipoproteínas
5.
J Liposome Res ; 30(3): 209-217, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31146618

RESUMEN

Liposomes have been on the market as drug delivery systems for over 25 years. Their success comes from the ability to carry toxic drug molecules to the appropriate site of action through passive accumulation, thus reducing their severe side effects. However, the need for enhanced circulation time and site and time-specific drug delivery turned research focus on other systems, such as polymers. In this context, novel composites that combine the flexibility of polymeric nanosystems with the properties of liposomes gained a lot of interest. In the present work a mixed/chimeric liposomal system, composed of phospholipids and block copolymers, was developed and evaluated in regards with its feasibility as a drug delivery system. These innovative nano-platforms combine advantages from both classes of biomaterials. Thermal analysis was performed in order to offers an insight into the interactions between these materials and consequently into their physicochemical characteristics. In addition, colloidal stability was assessed by monitoring z-potential and size distribution over time. Finally, their suitability as carriers for biomedical applications was evaluated by carrying out in vitro toxicity studies.


Asunto(s)
Lactonas/química , Membrana Dobles de Lípidos/química , Polímeros/química , Termodinámica , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Sistemas de Liberación de Medicamentos , Células HEK293 , Humanos , Lactonas/farmacología , Membrana Dobles de Lípidos/síntesis química , Membrana Dobles de Lípidos/farmacología , Liposomas , Estructura Molecular , Polímeros/síntesis química , Polímeros/farmacología
6.
Int J Paediatr Dent ; 30(4): 478-482, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32040219

RESUMEN

BACKGROUND: Dental caries represents one of the most common human diseases which can lead to pulpitis, pain, and tooth loss and can negatively affect growth and well-being. Although dietary and environmental factors have been extensively studied towards their contribution of the disease, genetic factors that contribute one's susceptibility over caries development remain rather clouded. AIM: To investigate the possible contribution of ACTN2 (rs6656267) and MPPED2 (rs11031093 and rs536007) polymorphisms in primary dentition caries. DESIGN: Samples from children (5-12 years old) were collected and genotyped for ACTN2 (rs6656267) and MPPED2 (rs11031093 and rs536007) polymorphisms. With regard to dmfs index and socio-economic status, an association between these polymorphisms and primary dentition caries was investigated. RESULTS: ACTN2 (rs6655267) and MPPED2 (rs536007) are not associated with primary dentition caries. MPPED2 (rs11031093, G Allele) is marginally associated. CONCLUSIONS: MPPED2 (rs11031093, G Allele) is marginally associated with caries susceptibility on primary dentition.


Asunto(s)
Caries Dental , Polimorfismo Genético , Diente Primario , Actinina , Estudios de Casos y Controles , Niño , Preescolar , Índice CPO , Humanos , Hidrolasas Diéster Fosfóricas/genética
7.
J Mater Chem B ; 12(27): 6587-6604, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38804576

RESUMEN

In this study, we designed and developed systems composed of poly(ethylene-oxide)-b-poly(ε-caprolactone) block copolymers of different molecular weights and compositions, non-ionic surfactant, and cyclodextrins. The innovation of this study lies in the combination of these diverse biomaterials to create biomimetic and bioinspired drug delivery supramolecular structures. The systems were formed by the thin-film hydration method. Extensive physicochemical and morphological characterization was conducted using differential scanning calorimetry, light scattering techniques, microcalorimetry analysis, high-resolution ultrasound spectroscopy, surface tension measurements, fluorescence spectroscopy, cryogenic transmission electron microscopy images, and in vitro cytotoxicity evaluation. These innovative hybrid nanoparticles were found to be attractive candidates as drug delivery systems with unique properties by encompassing the physicochemical and thermotropic properties of both classes of materials. Subsequently, Ropinirole hydrochloride was used as a model drug for the purpose of this study. These systems showed a high RH content (%), and in vitro diffusion experiments revealed that more than 90% of the loading dose was released under pH and temperature conditions that simulate the conditions of the nasal cavity. Promising drug release performance was observed with all tested formulations, worth further investigation to explore both ex vivo permeation through the nasal mucosa and in vivo performance in an experimental animal model.


Asunto(s)
Administración Intranasal , Ciclodextrinas , Indoles , Poliésteres , Polietilenglicoles , Ciclodextrinas/química , Indoles/química , Poliésteres/química , Polietilenglicoles/química , Humanos , Liberación de Fármacos , Tamaño de la Partícula , Portadores de Fármacos/química , Animales , Nanopartículas/química
8.
J Nanosci Nanotechnol ; 10(9): 5548-56, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21133073

RESUMEN

Liposomes applications in health care include meanly their ability to carry drugs and genes inside the human body for therapeutic purposes. Nevertheless their applicability can extend far beyond and could be used as analytical tools in order to perform rapid, low-cost, sensitive and specific analyses. Their physical characteristics, such as large internal volume and extended surface area, render them ideal for these applications and specifically for improving the specificity and sensitivity of the analytical assay. The purpose of this study was to develop a simple, stable and low-cost oligonucleotide-tagged liposomal formulation consisting of EggPC and DPPG with a simple to synthesize thiol-reactive conjugate (Mal-SA) incorporated into the lipid bilayer of liposomes. The prepared liposomes, having also the water soluble dye Sulforhodamine B encapsulated in their inner cavity, were characterized in terms of their physicochemical (size, size distribution, zeta-potential, lipid content) and mechanical (morphology, rigidity) properties. The results showed that the final liposomal formulation could be used in the future as analytical tool for detecting pathogen strains of microorganism in biological milieu.


Asunto(s)
Colorantes/administración & dosificación , Liposomas , Oligonucleótidos/administración & dosificación , Portadores de Fármacos/química , Humanos , Liposomas/química , Liposomas/ultraestructura , Microscopía de Fuerza Atómica , Nanotecnología , Tamaño de la Partícula , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Rodaminas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA